
Oracle® Configurator
Methodologies

Release 11i

Part No. B10618-01

Februrary 2003

This book describes particular methods of using Oracle
Configurator functionality for specialized purposes.

Oracle Configurator Methodologies, Release 11i

Part No. B10618-01

Copyright © 1999, 2003 Oracle Corporation. All rights reserved.

Primary Author: Tina Brand, Mark Sawtelle

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JInitiator, Oracle8, Oracle8i, Oracle9i, PL/SQL, SQL*Net, SQL*Plus,
and SellingPoint are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xiii

Preface... xv

Intended Audience ... xv
Documentation Accessibility .. xv
Structure .. xvi
Related Documents... xvii
Conventions... xvii
Product Support.. xviii

Part I Configuration Attributes

1 Configuration Attributes

1.1 Overview of Configuration Attributes... 1-1
1.1.1 Purpose .. 1-1
1.1.1.1 Typical Problems To Be Solved... 1-1
1.1.1.2 Solutions ... 1-2
1.1.1.3 Use of Configuration Attributes for Input .. 1-3
1.1.1.4 Use of Configuration Attributes for Output ... 1-3
1.1.2 Overviews of Implementing Configuration Attributes.. 1-5
1.1.2.1 Overview of Implementing Configuration Attributes for Input 1-5
1.1.2.2 Overview of Implementing Configuration Attributes for Output 1-6
1.1.3 Deploying the Solution.. 1-6
iii

1.2 Implementing Configuration Attributes for Input ... 1-7
1.2.1 Example for Implementing Input Configuration Attributes 1-7
1.2.2 Host Application Integration with Oracle Configurator.. 1-9
1.2.2.1 Responsibilities For Custom Host Application .. 1-9
1.2.2.2 Responsibilities For Oracle Applications Application Host 1-11
1.2.2.3 Responsibilities For Functional Companion Implementer 1-12
1.2.3 Modifying the Model ... 1-13
1.2.3.1 Creating Attribute Features ... 1-13
1.2.3.2 Creating Options ... 1-13
1.2.3.3 Creating Functional Companion Rules.. 1-14
1.2.4 Modifying the Functional Companion Example ... 1-15
1.2.4.1 Implementing AutoFunctionalCompanion Methods 1-15
1.2.4.2 Structuring the Behavior .. 1-17
1.2.4.3 Getting Session Parameters ... 1-18
1.2.4.4 Identifying the Host Application.. 1-19
1.2.4.5 Extracting Input Attribute Data for the Specified Quote Line 1-20
1.2.4.6 Transferring Data to Features.. 1-21
1.2.4.7 Guidelines for the Functional Companion .. 1-22
1.2.5 Runtime Behavior... 1-24
1.3 Implementing Configuration Attributes for Output.. 1-25
1.3.1 Database Tables for Configuration Attributes ... 1-27
1.3.1.1 The CZ_CONFIG_ATTRIBUTES Table ... 1-27
1.3.1.2 General Information about Tables.. 1-28
1.3.2 Defining Descriptive Flexfields .. 1-29
1.3.3 Modifying the Model ... 1-30
1.3.3.1 Design Principles... 1-30
1.3.3.2 Example of Model Structure.. 1-33
1.3.3.3 Alternative Modeling Strategies ... 1-37
1.3.3.4 Special Considerations ... 1-40
1.3.3.5 Creating Functional Companion Rules.. 1-41
1.3.4 The Output Functional Companion .. 1-42
1.3.5 Using Configuration Attributes in the Downstream Application 1-43
1.3.5.1 Storing Output Data for Downstream Use.. 1-44
1.3.5.2 Using Output Data in Downstream Applications.. 1-45
1.3.5.3 Linking Configuration Attributes to Flexfields .. 1-46
iv

1.3.5.4 Downstream User Interfaces ... 1-47
1.3.6 Maintaining the Output Solution... 1-48
1.3.7 Optional Flows ... 1-49
1.3.7.1 Modifying the Functional Companion .. 1-49

Part II Appendices

A Code Examples

A.1 Using Configuration Attributes for Input ... A-2
A.2 Using Configuration Attributes for Output .. A-10

Index
v

vi

List of Examples

1–1 Configuration Attribute Parameters in the Initialization Message.............................. 1-11
1–2 Query for Names of Oracle Applications .. 1-19
1–3 Structure of Sample BOM Model .. 1-33
1–4 Configuration Attributes for Sample BOM Model... 1-34
1–5 Flexfield Contexts and Segments for Sample BOM Model ... 1-34
1–6 Configuration Model Structure for Sample BOM Model.. 1-34
1–7 Reusing an Attribute Value for Multiple Items .. 1-37
1–8 Reusing an Attribute Value for Multiple Contexts .. 1-38
1–9 Using Different Contexts with Different Values... 1-39
1–10 Query for Value of ATTRIBUTE1 ... 1-45
1–11 Value of ATTRIBUTE1 ... 1-45
1–12 Strings for Property Names in the Functional Companion .. 1-50
A–1 Using Configuration Attributes for Input (CfgInputExample.java) A-2
A–2 Using Configuration Attributes for Output (WriteAttributes.java) A-11
vii

viii

List of Figures

1–1 Control and Data Flow at Design Time for Output ... 1-26
1–2 Control and Data Flow at Run Time for Output .. 1-27
1–3 Segments Summary for a Context .. 1-30
1–4 Flow for Oracle Applications UI with Flexfields .. 1-47
1–5 Flow for Oracle Applications UI with Flexfields with Joined Tables 1-48
1–6 Flow for Custom Application UI .. 1-48
ix

x

List of Tables

1–1 Potential Sources for Values of the client_header Parameter 1-12
1–2 Potential Sources for Values of the client_line Parameter.. 1-12
1–3 Potential Sources for Values of the client_line_detail Parameter................................ 1-12
1–4 The CZ_CONFIG_ATTRIBUTES Table .. 1-28
1–5 Flexfield Settings for All Contexts ... 1-29
1–6 Properties for Defining Configuration Attributes ... 1-32
1–7 Example Attribute Properties (Database Results) ... 1-37
1–8 Reusing an Attribute Value for Multiple Items (Database Results) 1-38
1–9 Reusing an Attribute Value for Multiple Contexts (Database Results)...................... 1-39
1–10 Using Different Contexts with Different Values (Database Results).......................... 1-40
A–1 Code Examples Provided .. A-1
xi

xii

Send Us Your Comments

Oracle Configurator Methodologies, Release 11i

Part No. B10618-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

� Electronic mail: czdoc_us@oracle.com
� FAX: 781-238-9898. Attn: Oracle Configurator Documentation
� Postal service:

Oracle Corporation
Oracle Configurator Documentation
10 Van de Graaff Drive
Burlington, MA 01803-5146
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

This manual presents tasks and information useful in implementing Oracle
Configurator. See the Oracle Configurator Installation Guide for installation
information and the Oracle Configurator Developer User’s Guide for information about
developing configuration models in Oracle Configurator Developer.

The Oracle Configurator Custom Web Deployment Guide of previous releases has been
included in this manual.

Intended Audience
Anyone responsible for supporting use of Oracle Configurator should read this
book. That includes supporting the development environment (Oracle Configurator
Developer) as well as the runtime environment that is created for deployment.

Ordinarily, the tasks presented in this book are performed by a Database
Administrator (DBA) or an Oracle Configurator implementer with DBA experience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.
xv

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
This manual contains a table of contents, lists of examples, tables and figures, a
reader comment form, several chapters, appendix, glossary, and index. The chapters
are organized in parts; each part contains the chapters related to a particular
methodology.

Within the chapters, information is organized in numbered sections of several
levels. Note that level does not imply importance or degree of detail. For instance,
third-level sections in one chapter (x.x.x) may not contain information of equivalent
detail to the third-level sections in another chapter.

� Part I, "Configuration Attributes"

– Chapter 1, "Configuration Attributes" describes the methodology for using
certain configuration features of Oracle Configurator and host applications
to capture and exchange data that is not standard inventory information.

� Part II, "Appendices"

– Appendix A, "Code Examples" contains code examples that support other
chapters of this document. These examples are fuller and longer than the
examples provided in the rest of this document, which are often fragments.

� "Glossary of Terms and Acronyms" contains definitions that you may need
while working with Oracle Configurator documentation.

The Index provides an alternative method of searching for key concepts and
product details.
xvi

Related Documents
The following documents are also included in the Oracle Configurator
documentation set on the Oracle Configurator Developer compact disc:

� Oracle Configurator Release Notes

� Oracle Configurator Implementation Guide

� Oracle Configurator Installation Guide

� Oracle Configurator Developer User’s Guide

� Oracle Configuration Interface Object (CIO) Developer’s Guide

� Oracle Configurator Performance Guide

For more information, see the documentation for Oracle Applications (Release 11i)
Oracle RDBMS (Release 8i or 9i), the Oracle Applications Library, the product-specific
Release Notes for releases supported to work with Oracle Configurator, and the
Configurator eTRM on Metalink, Oracle’s technical support Web site.

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a new term, a term defined in the
glossary, specific keys, and labels of user interface objects. Boldface
type also indicates a menu, command, or option, especially within
procedures

italics Italic type in text, tables, or code examples indicates user-supplied
text. Replace these placeholders with a specific value or string.

[] Brackets enclose optional clauses from which you can choose one or
none.
xvii

Product Support
The mission of the Oracle Support Services organization is to help you resolve any
issues or questions that you have regarding Oracle Configurator Developer and
Oracle Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request
(TAR) using Metalink, Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

Log into your Metalink account and navigate to the Configurator TAR template:

1. Choose the TARs link in the left menu.

2. Click on Create a TAR.

3. Fill in or choose a profile.

4. In the same form:

a. Choose Product: Oracle Configurator or Oracle Configurator Developer

b. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information
using Metalink.

For a complete listing of available Oracle Support Services and phone numbers, see:

www.oracle.com/support/

> The left bracket alone represents the MS DOS prompt.

$ The dollar sign represents the DIGITAL Command Language prompt
in Windows and the Bourne shell prompt in Digital UNIX.

% The per cent sign alone represents the UNIX prompt.

name() In text other than code examples, the names of programming
language methods and functions are shown with trailing
parentheses. The parentheses are always shown as empty. For the
actual argument or parameter list, see the reference documentation.
This convention is not used in code examples.

Convention Meaning
xviii

Part I

Configuration Attributes

Part I contains the following chapters:

� Configuration Attributes

Configuration Attr
1

Configuration Attributes

This chapter describes a methodology for using configuration attributes.

1.1 Overview of Configuration Attributes
The term configuration attributes denotes a methodology for using certain existing
features of Oracle Configurator and host applications to capture and exchange data
that is not standard inventory information.

1.1.1 Purpose
There are situations in which you need the ability to capture and pass certain
miscellaneous items of data between Oracle Configurator and a host application.
Such miscellaneous items can include free-form text (such as addresses) or
computed values (such as dimensions). The inventory information used by the
runtime Oracle Configurator does not always provide the structure needed to store
such non-standard data.

1.1.1.1 Typical Problems To Be Solved
This list of problems is by no means exhaustive. It is meant to illustrate the
problems that this methodology addresses.

� In fabrication industries, raw material is often purchased in standard sizes. A
problem occurs when the unit of measurement of the item in inventory
(typically "Each") is different from the unit of measurement (UOM) required by
the manufacturing process on the factory floor. Configuration rules can
determine how many inventory items are needed for the process, but cannot
capture the difference between the inventory measurement and the process
measurement.
ibutes 1-1

Overview of Configuration Attributes
Example: A fabrication company stocks the inventory items listed in the
following table:

Oracle Configurator may determine that a specific fabricated item requires 3
2x4s, each 61 inches long. While the quantity (3) and item ID (AA248) can be
passed back to the host application, the additional information as to the
required length of the item is not. The information that needs to be
communicated to the manufacturing floor is "Get 3 of Item AA248 and cut all
three down to 61 inches each".

� In many applications, end users need to enter or compute multiple attributes
for a given item. This is common in the metals industry where multiple
parameters may be required in order to specify or "formulate" a metal
component. For example, a number of attributes may be required to specify a
sheet of aluminum, including its length, width, gauge, and the percentages of
the various components that make up the metal.

� It may be necessary to enter or determine attribute information and have that
information associated with many items. For example, an attribute such as
"voltage" may apply to a number of items within the configuration that share
electrical properties.

1.1.1.2 Solutions
To solve the problems listed in Section 1.1.1.1, you can use Oracle Configurator
configuration attributes. These are attributes that you design and attach to certain
nodes of existing configuration models.

There are two distinct strategies for using configuration attributes, which you can
implement independently of each other:

� input, described in Section 1.1.1.3

� output, described in Section 1.1.1.4

You can use the two strategies together, but there is no requirement to do so, and
there are no special provisions in Oracle Configurator for making them interact.

Item ID Description UOM

AA248 2 x 4 Pine Stud, 8’ Each

AA148 1 x 4 Pine Stud, 8’ Each
1-2 Oracle Configurator Methodologies

Overview of Configuration Attributes
As background for the output strategy, you should familiarize yourself with
descriptive flexfields, which are a feature of Oracle Applications that allow you to
capture non-standard information.

1.1.1.3 Use of Configuration Attributes for Input
The use of configuration attributes for input permits values that are stored by a host
application in a database to be retrieved by Oracle Configurator and inserted into
the configuration model at the beginning of a configuration session, as the initial
values of specified Features. Unlike predefined initial values, configuration
attribute values are obtained dynamically at runtime, and reflect the latest state of
the host application.

During the configuration session, the input values can be modified in the normal
way, and are subject to configuration rules. Note that the values changed during the
session are not provided back to the host application.

Implementing the Strategy
Section 1.1.2.1 on page 1-5 provides an overview of how the input strategy works,
and the steps required to implement it.

Section 1.2 on page 1-7 provides the details for implementing the input strategy.

1.1.1.4 Use of Configuration Attributes for Output
The use of configuration attributes for output permits values to be captured as part
of an Oracle Configurator configuration session and, after the session, be provided
back to a host application for further use in the downstream process.

By using configuration attributes for output, you can capture miscellaneous text or
numeric data during the configuration session, store it in text or numeric Features
in the configuration model, and then provide it to the hosting application so that it
is still associated with the configured item.

At design time, you can:

� Supplement model structure in Oracle Configurator Developer (OCD) with
attributes for storing additional parameters, such as: dimensions, location
names, pricing annotations, and manufacturing notes.

� Write configuration rules against the added attributes

� Specify the level of association of the attribute values:

� Only where attached in the configuration model
Configuration Attributes 1-3

Overview of Configuration Attributes
� Where attached plus immediate selected model children

� Where attached plus all selected model descendents

At runtime, you can:

� Associate the configuration attributes’ values to specific line items, through
descriptive flexfield context definitions

� Write configuration attributes with different contexts for the same line item

� Associate a single configuration attribute value:

� to a single line item

� to many line items

� Associate many configuration attribute values to a single line item

Context for Processing Output
To understand the requirements that are filled by using configuration attributes, it is
helpful to summarize the events in a configuration session.

When a sales order or quote is created at runtime in a host application (for instance,
Order Management, iStore, or Oracle Quoting), the end user is asked to specify a
particular item to be configured. In the runtime Oracle Configurator, the end user
selects predefined options and enters numeric values, such as dimensions. Oracle
Configurator uses the configuration rules written for the configuration model in
Oracle Configurator Developer to automatically select or deselect additional items
as being required or excluded by the explicit user selections. After the configuration
session is completed (with the Done button), a complete configuration is saved, in
the Oracle Configurator schema of the application’s database.

After the configuration is saved, the host application performs downstream
processing that varies according to the specifics of that application. Consider Order
Management as an example here. When booking the order, Order Management
validates the configuration and explodes the configuration items onto the order,
creating additional order lines for each selected subcomponent of the configurable
model. Through invoking the Auto-Create Final Assembly concurrent program, the
order (that is, all order lines) can be passed to Oracle Manufacturing to be
scheduled and executed.

In addition to ensuring the valid configuration of selections and quantities in the
BOM, Oracle Configurator can provide additional configuration attributes attached
to the selected components that may or may not be directly related to the quantities.
1-4 Oracle Configurator Methodologies

Overview of Configuration Attributes
Through a custom procedure (which must be written as part of this methodology), a
downstream application can access the configuration attribute data.

The methodology described in this chapter provides a solution for:

� Defining these configuration attributes

� End-user entry of data for these configuration attributes

� Saving the values of these configuration attributes

Implementing the Strategy
Section 1.1.2.2 on page 1-6 provides an overview of how the output strategy works,
and the steps required to implement it.

Section 1.3 on page 1-25 provides the details for implementing the output strategy.

1.1.2 Overviews of Implementing Configuration Attributes
See Section 1.1.1.3 on page 1-3 and Section 1.1.1.4 on page 1-3 for overviews of the
use of these strategies.

1.1.2.1 Overview of Implementing Configuration Attributes for Input
See Section 1.2 on page 1-7 for the details on implementation.

How the Solution Works
A Model is specially modified to contain configuration attribute data. During the
initialization of an end user configuration session with that Model, a Functional
Companion retrieves the configuration attribute data from the host application’s
tables and inserts it into the Model so that it can be used during configuration
session.

What You Do to Implement the Solution
To use configuration attributes for the input of data from a host application to
Oracle Configurator, you must:

� If the host application is a custom application, modify the initialization message
to Oracle Configurator to specify the source of the configuration attribute data.
See Section 1.2.2 on page 1-9.

� Modify the structure of the configuration model so that it includes elements
that can receive the data (such as numeric Features). You must also associate a
Functional Companion with the structure. See Section 1.2.3 on page 1-13.
Configuration Attributes 1-5

Overview of Configuration Attributes
� Modify the example Functional Companion to pass the data from the host
application to the locations that you have created in the modified model. See
Section 1.2.4 on page 1-15.

� Deploy the Model and the Functional Companion. See Section 1.1.3 on page 1-6.

1.1.2.2 Overview of Implementing Configuration Attributes for Output
See Section 1.3 on page 1-25 for the details on implementation.

How the Solution Works
A configuration model is specially modified to contain configuration attribute data.
After an end user configuration session with that model terminates, a Functional
Companion captures the configuration attribute data from the model and inserts it
in the table CZ_CONFIG_ATTRIBUTES. A custom procedure retrieves the data
from this table and inserts it into descriptive flexfield segments, where it can be
accessed by the Oracle Applications host.

What You Do to Implement the Solution
To use configuration attributes for the output of data from Oracle Configurator to a
host application, you must:

� Understand the structure of the table CZ_CONFIG_ATTRIBUTES. See
Section 1.3.1 on page 1-27.

� Modify Oracle Applications to add flexfield definitions. See Section 1.3.2 on
page 1-29.

� Modify the configuration model to capture configuration attribute data. See
Section 1.3.3 on page 1-30.

� Possibly modify the example Functional Companion to match changes to the
configuration model. See Section 1.3.4 on page 1-42.

� Deploy the Model and the Functional Companion. See Section 1.1.3 on page 1-6.

� Write a custom procedure and customize the downstream application so that it
can use the configuration attribute data stored in CZ_CONFIG_ATTRIBUTES.
See Section 1.3.5 on page 1-43.

1.1.3 Deploying the Solution
The tasks for deploying your configuration attributes solution are the same for both
input and output.
1-6 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
After you have modified the host application, the Model, and the Functional
Companion, you must:

1. Using Oracle Configurator Developer, generate the Active Model and unit-test
it with the Test module. See the Oracle Configurator Developer User’s Guide for
details.

2. Publish the modified Model. See Oracle Configurator Implementation Guide for
information on publishing.

3. Compile the Functional Companion, as described in the Oracle Configuration
Interface Object (CIO) Developer’s Guide.

4. Install the Functional Companion, as described in the Oracle Configurator
Installation Guide. This involves placing the Java class file for the Functional
Companion in the class path of the Oracle Configurator Servlet, updating the
OC Servlet’s configuration files, and restarting the OC Servlet.

1.2 Implementing Configuration Attributes for Input
This section describes the details for implementing a configuration attributes input
solution.

See Section 1.1.2.2, "Overview of Implementing Configuration Attributes for
Output" on page 1-5 for an overview.

See the following sections for details on the tasks required for implementing
configuration attributes for input:

� Section 1.2.1, "Example for Implementing Input Configuration Attributes" on
page 1-7.

� Section 1.2.2, "Host Application Integration with Oracle Configurator" on
page 1-9.

� Section 1.2.3, "Modifying the Model" on page 1-13.

� Section 1.2.4, "Modifying the Functional Companion Example" on page 1-15.

� Section 1.1.3, "Deploying the Solution" on page 1-6.

1.2.1 Example for Implementing Input Configuration Attributes
The methodology for implementing input configuration attributes is illustrated
throughout Section 1.2 by use of a simple hypothetical example. This section
describes that example.
Configuration Attributes 1-7

Implementing Configuration Attributes for Input
Assumptions for the Example
Assume that you have the following requirements:

� The product that you are selling through your host application must be
configured partly on the basis of the U.S. state to which it is shipped.

� You want to use Oracle Configurator to decide which version of your product
must be selected, based on the U.S. state.

� The host application is Oracle Quoting.

� For a given quote line, you want to capture the identity of the U.S. state for the
customer associated with the quote, so that you can pass it to Oracle
Configurator. Assume that the address is associated with the order header.

Methodology for the Example
The example uses the following method to fulfill your requirements:

1. The host application (Oracle Quoting) calls the runtime Oracle Configurator
when the end user clicks the Configure button. The initialization message
posted from Oracle Quoting to OC includes a parameter that identifies the
current quote line.

2. Oracle Configurator creates a new configuration. In doing so, it triggers the
execution of the onNew() method of the Functional Companion associated
with the configuration model.

3. The Functional Companion uses a custom query to extract the data associated
with quote line, using the quote header to access the U.S. state for the
customer ’s address.

4. The Functional Companion processes the result set returned by the query to
isolate the value for the U.S. state name.

5. The Functional Companion stores the value of the U.S. state name in a local
variable.

6. The configuration model includes a Feature named US_State dedicated to
storing the name of a U.S. state, so that state-specific configuration rules can be

Note: This chapter, Chapter 1, "Configuration Attributes",
discusses methodological examples of implementing configuration
attributes, and provides examples of Functional Companion
coding. The term example is used for both.
1-8 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
written against it. Each Option of this Feature is named for a U.S. state, in a way
that matches the state name stored in the customer record used by the host
application (that is, with the state’s two-letter postal abbreviation).

7. The Functional Companion uses a custom method to locate the Feature named
US_State. The search starts from the node with which the Functional
Companion has been previously associated in Configurator Developer.

8. The Functional Companion uses the same custom method to locate the Option
whose name matches the U.S. state name that was extracted from the database.

9. The Functional Companion selects that particular Option. Now, any
configuration rules written against that Option will be invoked or set or
applied.

1.2.2 Host Application Integration with Oracle Configurator
The responsibilities for this task depend on the integration role:

� Custom Application: If you are integrating Oracle Configurator with a custom
host application, see Section 1.2.2.1, "Responsibilities For Custom Host
Application" on page 1-9.

� Oracle Applications: If you are integrating Oracle Configurator with Oracle
Applications, see Section 1.2.2.2, "Responsibilities For Oracle Applications
Application Host" on page 1-11.

� Functional Companion: If you are implementing the Functional Companion
used for input configuration attributes, see Section 1.2.2.3, "Responsibilities For
Functional Companion Implementer" on page 1-12.

See Section 1.2.1, "Example for Implementing Input Configuration Attributes" on
page 1-7 for background.

1.2.2.1 Responsibilities For Custom Host Application
A custom host application must pass to Oracle Configurator the information that
identifies the line item that is associated with the desired configuration attribute
data.

The mechanism for passing this identification information is a set of parameters in
the initialization message that is sent by the Oracle Applications host to the Oracle
Configurator Servlet.

� The choice of parameters is described in Specifying Initialization Parameters for
Input Configuration Attributes on page 1-10.
Configuration Attributes 1-9

Implementing Configuration Attributes for Input
� The parameters themselves are described in Initialization Parameter
Descriptions on page 1-10.

� The task of adding the parameters is described in Adding the Parameters to the
Initialization Message on page 1-11.

Specifying Initialization Parameters for Input Configuration Attributes
The set of parameters that must be added to the initialization message depends on
the requirements of the host application.

The host application must always specify its identity, with the parameter calling_
application_id (see calling_application_id on page 1-10).

In addition to specifying its identity, the host application must identify the line item
that is associated with the desired configuration attribute data. This identification
should be performed using as many of the following parameters as necessary:

� client_header

� client_line

� client_line_detail

Initialization Parameter Descriptions
The values of these parameters depend on the host application. For some examples,
see Section 1.2.2.2, "Responsibilities For Oracle Applications Application Host" on
page 1-11.

calling_application_id
Use this parameter to identify the Oracle Applications host that is invoking Oracle
Configurator. The value of the ID for your application is obtained from FND_
APPLICATION.APPLICATION_ID. (See the description of calling_
application_id in the Oracle Configurator Implementation Guide for other
information about this parameter.) See Section 1.2.4.4, "Identifying the Host
Application" on page 1-19 for information about determining the value to use for
this parameter.

client_header
Use this parameter to specify the unit of work for the application (for example, an
order or quote).

client_line
The particular part of the order or quote that the configuration is initiated against.
1-10 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
client_line_detail
This parameter is used to provide additional information if client_line does not
provide enough.

Adding the Parameters to the Initialization Message
Example 1–1 on page 1-11 shows sample parameters for identifying a line item in
the initialization message sent by a host application to the runtime Oracle
Configurator. The parameters not related to configuration attributes are omitted
from this example. The values for client_header and client_line are
hypothetical; the value for calling_application_id applies to the Order
Management application.

Example 1–1 Configuration Attribute Parameters in the Initialization Message

<initialize>
...
<param name="calling_application_id">660</param>
...
<param name="client_header">12345</param>
<param name="client_line">1000</param>
...
</initialize>

For general background and specific details on initialization parameters and the
initialization message, see the Oracle Configurator Implementation Guide.

1.2.2.2 Responsibilities For Oracle Applications Application Host
Some Oracle Applications support the use of configuration attributes in their
initialization message. See the Release Notes for a particular application to see
whether it does.

Oracle Applications use the same set of possible initialization parameters as custom
host applications. See Specifying Initialization Parameters for Input Configuration
Attributes on page 1-10.

For the sake of example, Table 1–1, Table 1–2, and Table 1–3 list the potential
sources, in certain host Oracle Applications, for the data that can be provided for
the parameters client_header, client_line, and client_line_detail.
Configuration Attributes 1-11

Implementing Configuration Attributes for Input
1.2.2.3 Responsibilities For Functional Companion Implementer
When you modify the example Functional Companion (Example A–1 on page A-2):

� You must know which of the configuration attribute initialization parameters
are being passed in the initialization message. The recommended parameters
are described in Specifying Initialization Parameters for Input Configuration
Attributes on page 1-10.

� You must get the names and values of the passed parameters, including
calling_application_id, as described in Section 1.2.4.3 on page 1-18.

� You must write a query that extracts the desired data from the tables associated
with the quote or order line, as described in Section 1.2.4.5 on page 1-20.

� See Section 1.2.4 on page 1-15 for details on the rest of the tasks required when
modifying the Functional Companion.

Table 1–1 Potential Sources for Values of the client_header Parameter

Application Source for Parameter Data

Oracle Order Management (ONT) OE_ORDER_LINES_ALL.HEADER_ID

Oracle Quoting (ASO) Probably not used.

Oracle Contracts Core (OKC) Probably not used.

Table 1–2 Potential Sources for Values of the client_line Parameter

Application Source for Parameter Data

Oracle Order Management (ONT) OE_ORDER_LINES_ALL.LINE_ID

Oracle Quoting (ASO) ASO_QUOTE_LINE.QUOTE_LINE_ID

Oracle Contracts Core (OKC) OKC_K_LINES.ID

Table 1–3 Potential Sources for Values of the client_line_detail Parameter

Application Source for Parameter Data

Oracle Order Management (ONT) Not used.

Oracle Quoting (ASO) ASO_QUOTE_LINE.LINE_NUMBER

Oracle Contracts Core (OKC) OKC_K_LINES.LINE_NUMBER
1-12 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
1.2.3 Modifying the Model
See Section 1.2.1, "Example for Implementing Input Configuration Attributes" on
page 1-7 for background.

To create configuration rules that operate on the input configuration attribute data,
your Model must include some additional structure that receives the data when it is
transferred to the runtime Model by your Functional Companion.

To create this structure, you use Oracle Configurator Developer, as described in
Section 1.2.3.1 and following. See the Oracle Configurator Developer User’s Guide for
details on creating structure.

1.2.3.1 Creating Attribute Features
In order to write configuration rules that involve configuration attribute data, the
attributes are represented in the configuration model by Features. In the solution
described here, these Features are called attribute Features. The value of each
configuration attribute is stored in an attribute Feature. Each attribute Feature
corresponds, more or less, to a field in the host application’s database.

Attribute Features are not a new type of Feature. The term attribute Feature simply
means a Feature that is used to contain the data for a configuration attribute.

To work with the example, create a Feature named US_State, with a Type set to
List of Options, and Minimum and Maximum both set to 1.

The name of the Feature must agree exactly with the name that you specify for the
findFirstNodeByName() method of the Functional Companion, since the
Feature is located by a case-sensitive string search on each character of the name.
See Section 1.2.4.6, "Transferring Data to Features" on page 1-21.

You can use this Feature as a participant in a configuration rule that specifies a
particular U.S. state.

1.2.3.2 Creating Options
The name of each Option must match the data value stored in the customer record
used by the host application.

To work with the example, create a list of Options for the Feature named US_
State. Set the Name of each Option to be the postal abbreviation for a U.S. state
(for example, CA, NY, MA, RI).

The name of each Option must agree exactly with one of the values retrieved from
the host application’s database by the custom query in the Functional Companion.
Configuration Attributes 1-13

Implementing Configuration Attributes for Input
The retrieved value is passed as an argument to the findFirstNodeByName()
method of the Functional Companion,which performs a case-sensitive string search
on each character of the name. See Section 1.2.4.6, "Transferring Data to Features" on
page 1-21.

You can use this Option as a participant in a configuration rule that specifies a
particular U.S. state.

1.2.3.3 Creating Functional Companion Rules
The Functional Companion must be associated with the node in the Model’s
structure that is the starting point for locating the Feature that contains the
configuration attribute Options.

To work with the example, create a Functional Companion rule and associate it with
a parent node of the Feature named US_State. Choose a node that is certain to
contain the Feature, so that the search for it by the findFirstNodeByName()
method of the Functional Companion will be successful and efficient. Consider that
choosing a node high in the Model’s hierarchical structure will result in a longer
search, and may result in locating the wrong Feature if there is another one with the
same name.

Set the Definition of the Functional Companion rule as shown in the following
table:

For more details on defining Functional Companion rules, see the Oracle
Configuration Interface Object (CIO) Developer’s Guide. For details on defining other
kinds of configuration rules, see the Oracle Configurator Developer User’s Guide.

Rule Definition Attribute Definition Value

Base Component The node from which the Functional Companion will search
for the specified Feature.

Type Event-Driven

Implementation Java

Program String The name of the Java class that implements the input
Functional Companion. For the example, this is
CfgInputExample (Example A–1 on page A-2).
1-14 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
1.2.4 Modifying the Functional Companion Example
For the complete Java code example that supports this section, see Example A–1 on
page A-2, in Section A.1, which demonstrates a Functional Companion that uses
configuration attributes for input to a configuration model

This section includes excerpts from Example A–1.

For a summary of the flow of data and control in the Functional Companion
example, see Methodology for the Example under Section 1.2.1, "Example for
Implementing Input Configuration Attributes" on page 1-7.

When you customize the Functional Companion, keep in mind that it should only
perform the function of transferring data into your configuration model. For
simplicity and maintainability, you should not perform other operations in this
Functional Companion.

This Functional Companion example is customized to work with Oracle Quoting.
The customizations are identified and explained where they occur in the following
sections, so that you can customize your Functional Companion for your own host
application.

1.2.4.1 Implementing AutoFunctionalCompanion Methods
For your Functional Companion to be run automatically when the host application
invokes the runtime Oracle Configurator, you must extend the class
AutoFunctionalCompanion, as shown in the following code fragment.

public class CfgInputExample extends AutoFunctionalCompanion {
// body of class defined here

...
}

Caution: Example A–1 demonstrates a Functional Companion
that uses configuration attributes for input to a configuration
model. This example is only a template for your own solution to the
problem; you must modify the code in the example to suit your own
configuration model and host application.

Note: Be sure to check the Oracle Configuration Interface Object
(CIO) Developer’s Guide for a description of the Java development
skills required for success with Functional Companions.
Configuration Attributes 1-15

Implementing Configuration Attributes for Input
You must also override the onNew() and onRestore() methods of
AutoFunctionalCompanion, to provide functionality when the configuration
associated with the Functional Companion is either created, or restored,
respectively. The following code fragment shows the structure of this overriding.

public void onNew() throws LogicalException {
// functionality of method defined here
doInputAttributeTransfer();

}

public void onRestore() throws LogicalException {
// functionality of method defined here
doInputAttributeTransfer();

}

Your Functional Companion can define functionality for both methods. The
appropriate method will be triggered by the runtime Oracle Configurator when the
configuration associated with the Functional Companion is either created or
restored.

The method doInputAttributeTransfer() is part of the example, and is
explained in Section 1.2.4.2, "Structuring the Behavior" on page 1-17.

You should be careful in deciding what functionality to define in onNew(), in
onRestore(), or in both.

� If you use only onNew(), then the input configuration attribute data is
retrieved only once, when the configuration is created. You should do this if
you want the configuration attribute data to remain the same throughout the
life of the configuration.

If you want to ensure that the original input data is never changed, and to
specify an unchangeable set of logical assertions against that data, you should
use initial requests (which are described in the Oracle Configuration Interface
Object (CIO) Developer’s Guide).

� If you use only onRestore(), then the input configuration attribute data is
retrieved only whenever the saved configuration is restored from the database.
It is unlikely that you would want to use only onRestore(), since the result
would be that no configuration attribute data would be input into your
configuration model when a configuration is created.

� If you use both onNew() and onRestore(), then the input configuration
attribute data is retrieved when the configuration is created and also whenever
1-16 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
it is restored. (Note that if you used initial requests in onNew(), then
onRestore() will not be able to change those values.)

The effect is that the current source data in the host application’s database is
always put into your configuration model. However, be aware that if the host
application has changed the source data since the configuration was created,
that changed data will be put into your configuration model, and may produce
different results when it interacts with your configuration rules.

1.2.4.2 Structuring the Behavior
The main tasks that must be performed by the Functional Companion are:

� Getting the session parameters from the initialization message. Section 1.2.4.3
on page 1-18.

� Identifying the host application. See Section 1.2.4.4 on page 1-19.

� Extracting the input configuration attribute data for the quote (or order) line
associated with the configuration. See Section 1.2.4.5 on page 1-20.

� Transferring the configuration attribute data to the configuration model. See
Section 1.2.4.6 on page 1-21.

In the example, the methods for performing these tasks are gathered together for
convenience in the method doInputAttributeTransfer(), as shown in the
following code fragment.

private void doInputAttributeTransfer() throws LogicalException {

// Get the session parameters
getSessionParameters();
if (mOrderLineNumber == null) return;

// Identify the host application
if (mApplicationId.longValue() != 697) return;

// Specify the quote/order line and extract the attribute data
getInputAttributes();

// Transfer the attribute data to the configuration model
transferInputAttributesIntoModel();

}

See Section 1.2.4.4, "Identifying the Host Application" on page 1-19 for background
on the value of mApplicationId.
Configuration Attributes 1-17

Implementing Configuration Attributes for Input
1.2.4.3 Getting Session Parameters
The Functional Companion must extract the parameter values it needs from the
initialization message posted to Oracle Configurator by the host application. The
parameters used for obtaining configuration attribute data are described in
Specifying Initialization Parameters for Input Configuration Attributes on
page 1-10.

The example defines the method getSessionParameters(), as shown in the
following code fragment.

private void getSessionParameters() {

// 1. Get the parameters in the initialization message
NameValuePairSet initParams =

getRuntimeNode().getConfiguration().getInitParameters();
String paramValue = null;

// 2. Get the value of the parameter "client_line"
paramValue = (String)initParams.getValueByName("client_line");

// 3. Store the parameter value
if (paramValue != null) mOrderLineNumber = Long.valueOf(paramValue);

// 4. Get and store the value of the parameter "calling_application_id"
paramValue = (String)initParams.getValueByName("calling_application_id");
if (paramValue != null) mApplicationId = Long.valueOf(paramValue);
}

The method getSessionParameters() performs the following tasks:

1. Gets the parameters of the initialization message, with
Configuration.getInitParameters().

2. Gets the value of the parameter that identifies the quote line or order line
(client_line), using NameValuePairSet.getValueByName(). You may
need to customize this to extract other parameter values.

3. Stores the value of the parameter in the variable mOrderLineNumber, if it is
not null. You may have to change the data type of the variable depending on
the type of the initialization parameter data being passed.

4. Gets the value of the parameter that identifies the host application (calling_
application_id), using NameValuePairSet.getValueByName(). If it is
not null, store it in the variable mApplicationId.
1-18 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
1.2.4.4 Identifying the Host Application
The Functional Companion must check the identity of the host application that
posted the initialization message to the runtime Oracle Configurator. This allows
you to process the initialization parameters and configuration attribute data
differently, depending on the host application.

The Oracle Applications host is supposed to pass the identity of the application in
the initialization parameter calling_application_id.

If your host application is not part of Oracle Applications, then you must design
your own mechanism for identifying the host application to the Functional
Companion.

The following test from the example’s doInputAttributeTransfer() method
compares the mApplicationId obtained from getSessionParameters()to the
application ID for Oracle Quoting, and returns immediately out of the method if it
does not match.

if (mApplicationId.longValue() != 697) return;

The following test from the example’s getInputAttributes() method checks
whether the mApplicationId matches the application ID for Oracle Quoting, and
proceeds if it does.

if (mApplicationId.longValue() == 697) {
...
}

The SQL query in Example 1–2 on page 1-19 lists the IDs, short names, and long
names for Oracle Applications. You can examine the results of the query to
determine the application ID for your own host application.

Example 1–2 Query for Names of Oracle Applications

SELECT SUBSTR(application_short_name,1,10) sName,
SUBSTR(application_name,1,32) application,
application_id as id

FROM fnd_application_vl
ORDER BY application_short_name;

The IDs and short names for hosting Oracle Applications are listed in the Oracle
Configurator Release Notes.
Configuration Attributes 1-19

Implementing Configuration Attributes for Input
1.2.4.5 Extracting Input Attribute Data for the Specified Quote Line
The Functional Companion extracts the configuration attribute data from the host
application’s database by means of a customized SQL query that specifies the
mOrderLineNumber that was obtained by getSessionParameters() (see
Section 1.2.4.3 on page 1-18). To perform this data extraction, the example defines
the method getInputAttributes(), as shown in the following fragment.

private void getInputAttributes() {

Connection conn =
getRuntimeNode().getConfiguration().getContext().getJDBCConnection();

PreparedStatement pStmt = null;
ResultSet rs;
int ret;

...
// Define a custom query to extract the U.S. state for a quote line

String sql = "select p.state "
+ "from hz_parties p, "
+ " aso_quote_headers_all_v q, "
+ " ASO_QUOTE_LINES_ALL_V l "
+ "where p.party_id = q.cust_account_id "
+ "and l.quote_header_id = q.quote_header_id "
+ "and l.quote_line_id = ?";

pStmt = conn.prepareStatement(sql);

// Put the line number into the first (and only) parameter
// of the PreparedStatement, for quote_line_id

pStmt.setLong(1, mOrderLineNumber.longValue());

// Execute the query, putting the results in a ResultSet
rs = pStmt.executeQuery();

// Iterate through the ResultSet and get the first value
...

mUsState = rs.getString(1);
...
}

1-20 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
1.2.4.6 Transferring Data to Features
At this point, the Functional Companion has obtained the configuration attribute
data (the abbreviation for a U.S. state), and stored it in a local variable (mUsState).
Now the value must be transferred into a Feature of your configuration model
(named US_State) that is dedicated to storing the configuration attribute data (the
abbreviation of the U.S. state).

To perform this transfer, the example first defines a general transfer method
transferInputAttributesIntoModel(), which is called in
doInputAttributeTransfer(). This general method in turn calls a more
specific transfer method, transferUsState(), which you must customize or
replace, to transfer the configuration attribute data to the dedicated Feature of your
configuration model.

This arrangement, which is intended to provide modularity and ease of
customization, is shown in the following fragment.

private void transferInputAttributesIntoModel() throws LogicalException {
transferUsState();

}

private void transferUsState()throws LogicalException {

if (mUsState == null) return;

// Find the Feature dedicated to the attribute data
IRuntimeNodertNode=findFirstNodeByName(getRuntimeNode(),"US_State");

if (rtNode == null) return;

if (rtNode.getType() != IRuntimeNode.OPTION_FEATURE) return;

// Use the attribute value to find the Option with the matching name
IOption option = (IOption)findFirstNodeByName(rtNode, mUsState);
if (option == null) return;

...

Note: The code fragment shown here omits error handling, for
clarity. The full coding of the example for
getInputAttributes() includes error handling for the query
and processing of the results. Be sure to examine Example A–1 on
page A-2.
Configuration Attributes 1-21

Implementing Configuration Attributes for Input
// Select the option to set its value
option.select();

...
}

Starting from the runtime node to which it has been previously associated, the
transfer method uses a custom method (findFirstNodeByName()) to locate the
Feature named US_State.

The transfer method then uses findFirstNodeByName() to locate the Option
whose name matches the U.S. state name that was extracted from the database.

Finally, the transfer method selects that particular Option. Now, any configuration
rules written against that Option will be able to operate on it.

The utility method findFirstNodeByName() is defined in the full example. See
Example A–1 on page A-2 for the definition of this method.

1.2.4.7 Guidelines for the Functional Companion
This section lists guidelines for writing a Functional Companion for input
configuration attributes. See the preceding subsections of Section 1.2.4 for
illustrations of these guidelines.

General
� The sole purpose of the Functional Companion should be to transfer

configuration attribute data from a host application to the runtime Oracle
Configurator.

Do not perform any calculations on the configuration attribute data in the
Functional Companion. Instead, perform the calculations through the structure
and rules of the configuration model. This practice greatly improves the
maintainability of the configuration rules, since the rules can be modified by
using Oracle Configurator Developer, instead of by programming.

� Assign only one Functional Companion that implements
AutoFunctionalCompanion.onNew() for configuration attribute transfer
per configuration model.

The same guideline applies to a Functional Companion that implements
AutoFunctionalCompanion.onRestore().

Note: The code fragment shown here omits some error handling,
for simplicity. Be sure to examine Example A–1 on page A-2.
1-22 Oracle Configurator Methodologies

Implementing Configuration Attributes for Input
� Design the Functional Companion so that it works with all of your relevant host
applications that include configuration models. The example demonstrates how
to test for different applications.

� The Functional Companion is not able to return messages resulting from
exceptions, since an exception (which produces a message) returned from any
Functional Companion that runs during the initialization of the runtime Oracle
Configurator is treated as a fatal exception. The end-user session is terminated,
displaying the message thrown from the exception. Consequently, structure the
configuration model so that validation failures, rather than exceptions, will be
produced when configuration attribute values have changed between sessions
(assuming that you want your end user to know about this change during the
configuration session). See the Oracle Configuration Interface Object (CIO)
Developer’s Guide for background on validating configurations.

� You can write a single Functional Companion that focuses on a single
configuration attribute, and it will work with all configuration models that are
modified to include that configuration attribute’s data. You do not have to
create a separate Functional Companion for each of these configuration models.
This is true because the Functional Companion is written to search for the
Feature that corresponds to the configuration attribute, regardless of where it is
placed in a Model.

� Because the example uses the findFirstNodeByName() method to locate the
attribute Feature, you cannot write a single Functional Companion to provide
input to more than one configuration attribute.

� For simplicity, the example Functional Companion is written to provide data to
one attribute Feature. By implementing separate blocks of code, you can modify
the Functional Companion so that it provides input data to multiple attribute
Feature.

When Implementing the onNew() Method
See Section 1.2.4.1, "Implementing AutoFunctionalCompanion Methods" on
page 1-15 for coverage of the onNew() method.

� If your Functional Companion’s custom query to the host application’s
database does not find a value for the configuration attribute, then the
Functional Companion should not attempt to provide a default value. Instead,
your configuration model should include a Defaults rule that provides the
default value. See the Oracle Configurator Developer User’s Guide for details on
Defaults rules. The Functional Companion should report an error, as is shown
in the full example (Example A–1 on page A-2).
Configuration Attributes 1-23

Implementing Configuration Attributes for Input
When Implementing the onRestore() Method
See Section 1.2.4.1, "Implementing AutoFunctionalCompanion Methods" on
page 1-15 for coverage of the onRestore() method.

� Not all previously saved attributes need to be loaded. For example, if a Feature
value is calculated from several configuration attributes, then only the inputs to
the calculation need to be restored. It may also be that these inputs may be the
values of BOM items, which don't need to be restored through the Functional
Companion.

� You must decide when to update configuration attribute data: whether to
restore it from the saved configuration or by extracting it again from the host
application. Getting the most current value from the host application is usually
the best course. However, if you don’t want the most current value from the
host application, then the value is already restored, and you don’t need to take
further action.

� You must consider the host application domain when restoring a configuration
into a different host application. For example, when the configuration is saved
in Oracle Quoting, submitted to Order Management, and later is restored in
Order Management (with batch validation), there can be different treatment of
an input configuration attribute, but only if you code your Functional
Companion to do that.

1.2.5 Runtime Behavior
See Methodology for the Example under Section 1.2.1, "Example for Implementing
Input Configuration Attributes" on page 1-7 for a summary of the behavior of the
host application and Oracle Configurator at runtime.

Interactive Configuration Session Scenario
When the runtime Oracle Configurator is invoked by the host application, the user
interface is loaded and presented to the user. If there are any validation failures
resulting from creating the configuration, they are displayed to the user. The session
then waits to interact with the user.

Any errors other than validation failures cause the session to terminate.

Batch Validation Scenario
When the host application performs batch validation (for example, when Order
Management books the order), any validation failures are recorded into the CZ_
CONFIG_MESSAGES table. Then each user input, if any, is set by Order
1-24 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
Management. All contradictions are recorded in CZ_CONFIG_MESSAGES.
Overridable contradictions are overridden.

Any errors other than validation failures cause the session to terminate.

1.3 Implementing Configuration Attributes for Output
This section describes the details for implementing a configuration attributes output
solution.

See Section 1.1.2.2 on page 1-6 for an overview.

See the following sections for details on the tasks required for implementing
configuration attributes for output:

� Section 1.3.1, "Database Tables for Configuration Attributes" on page 1-27.

� Section 1.3.2, "Defining Descriptive Flexfields" on page 1-29.

� Section 1.3.3, "Modifying the Model" on page 1-30.

� Section 1.3.4, "The Output Functional Companion" on page 1-42.

� Section 1.1.3, "Deploying the Solution" on page 1-6.

� Section 1.3.5, "Using Configuration Attributes in the Downstream Application"
on page 1-43.

Recommended Control and Data Flows
The control and data flow at design time is shown in Figure 1–1 on page 1-26.

The control and data flow at runtime is shown in Figure 1–2 on page 1-27.

Note: The flows shown here illustrate the methodology
recommended in this chapter for Oracle Applications. If you are
integrating with a custom host application, then you must make the
appropriate adjustments to your flow, and also to the Functional
Companion used to help implement it.
Configuration Attributes 1-25

Implementing Configuration Attributes for Output
Figure 1–1 Control and Data Flow at Design Time for Output
1-26 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
Figure 1–2 Control and Data Flow at Run Time for Output

1.3.1 Database Tables for Configuration Attributes
Certain tables in the Oracle Applications database are used to hold configuration
attribute data written by the runtime Oracle Configurator, so that it can be used by
downstream applications. For downstream applications, Oracle Configurator uses
the table CZ_CONFIG_ATTRIBUTES. See Section 1.3.1.1 on page 1-27.

1.3.1.1 The CZ_CONFIG_ATTRIBUTES Table
The table CZ_CONFIG_ATTRIBUTES is used as the intermediate store of
configuration attribute data between Oracle Configurator and the host application.
The runtime Oracle Configurator writes output data to the table by means of the
Functional Companion described in Section 1.3.4 on page 1-42. The data is available
to a host application by means of the descriptive flexfields you define, as described
Configuration Attributes 1-27

Implementing Configuration Attributes for Output
in Section 1.3.2 on page 1-29. A custom procedure (which you must write) reads the
data from CZ_CONFIG_ATTRIBUTES and inserts it into the tables used by a
specific downstream application.

The layout and description of the CZ_CONFIG_ATTRIBUTES table is provided in
Table 1–4.

The columns CONFIG_HDR_ID, CONFIG_REV_NBR, CONFIG_ITEM_ID and
ATTRIBUTE_CATEGORY constitute the primary key for CZ_CONFIG_
ATTRIBUTES.

All of the columns ATTRIBUTE1 through ATTRIBUTE30 are defined identically,
and the columns between ATTRIBUTE2 and ATTRIBUTE30 have been omitted from
Table 1–4 for brevity.

The standard columns such as LAST_UPDATE_DATE have also been omitted for
brevity.

1.3.1.2 General Information about Tables
For information about the Oracle Configurator schema, see the Oracle Configurator
Implementation Guide. For technical details about CZ_CONFIG_ATTRIBUTES, CZ_
CONFIG_EXT_ATTRIBUTES, and other tables, see the Configurator eTRM on
Metalink, Oracle’s technical support Web site.

Table 1–4 The CZ_CONFIG_ATTRIBUTES Table

Column Name Null? PK? Type Comments

CONFIG_HDR_ID N Y NUMBER(9) Configuration header ID

CONFIG_REV_NBR N Y NUMBER(9) Configuration revision
number

CONFIG_ITEM_ID N Y NUMBER(9) Configuration item ID

ATTRIBUTE_CATEGORY N Y VARCHAR2(30) Name of the flexfield
context

ATTRIBUTE1 Y N VARCHAR2(240) Flexfield segment value for
the specified context

ATTRIBUTE2 Y N VARCHAR2(240) Flexfield segment value for
the specified context

...

ATTRIBUTE30 Y N VARCHAR2(240) Flexfield segment value for
the specified context
1-28 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
1.3.2 Defining Descriptive Flexfields
Configuration attributes are provided by defining descriptive flexfield segments
that are used in conjunction with attribute Features. See Section 1.3.3.1, "Design
Principles" on page 1-30 for an explanation of attribute Features.

To define the metadata for the flexfields, log into Oracle Applications with the
Oracle Application Developer responsibility. Metadata describes how data is
organized. See the Oracle Applications Flexfields Guide for details on defining
descriptive flexfields.

When you create the flexfields, use the settings shown in Table 1–5 for all contexts
that you define.

When you create the flexfields, you define whatever contexts are required by the
host application. Then, for each segment in a context, you need to specify the
ATTRIBUTEn column in CZ_CONFIG_ATTRIBUTES in which that segment’s data
will be allocated (see Table 1–4 on page 1-28 for the available column names).

Example of Flexfield Definition
For a context named EAST, define that the segment named COLOR stores its data in
ATTRIBUTE1 of the designated table (CZ_CONFIG_ATTRIBUTES), that a segment
named WEIGHT stores its data in ATTRIBUTE2, and so on. Figure 1–3 on page 1-30
shows a summary of such segment definitions in Oracle Applications.

Table 1–5 Flexfield Settings for All Contexts

Setting Value

Application Oracle Configurator

Table Application Oracle Configurator

Table Name CZ_CONFIG_ATTRIBUTES
Configuration Attributes 1-29

Implementing Configuration Attributes for Output
Figure 1–3 Segments Summary for a Context

Guidelines
If you want to replicate the attribute values as flexfields on a particular downstream
application table (for example, MRP_FLOW_SCHEDULES), then it is good practice
to match all the context and segment names as well as using the same column
names for the CZ_CONFIG_ATTRIBUTES definitions. In other words, all flexfield
definitions should be duplicated with the only difference being the Application and
the Table Name.

1.3.3 Modifying the Model
To use configuration attributes, you must modify your configuration model as
described in this section.

1.3.3.1 Design Principles
In order to write configuration rules that involve configuration attribute data, the
attributes are represented in the configuration model by Features. In the solution
described here, these Features are called attribute Features. The value of each
configuration attribute is stored in an attribute Feature. Each attribute Feature
corresponds to a descriptive flexfield segment (see Section 1.3.2, "Defining
Descriptive Flexfields" on page 1-29).
1-30 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
Attribute Features are not a new type of Feature. The term attribute Feature simply
means a Feature that is used to contain the data for a configuration attribute.

The data types of the attribute Features must match the data types of the
corresponding descriptive flexfields: an Integer Feature for an integer flexfield, an
Option Feature for a LOV flexfield, and so on.

To control the flow of configuration attribute data from the Model to the CZ_
CONFIG_ATTRIBUTES table (and subsequently to the descriptive flexfields used
by a downstream application), you define Properties on nodes in the Model
structure:

� To assign an attribute Feature to the corresponding descriptive flexfield
segment, you must define a Property on the Feature that contains the name of
the flexfield segment. This Property should be called ATTR_NAME.

� To assign an attribute Feature to the correct flexfield context for the
corresponding segment, you must define a Property on the Feature that
contains the name of the flexfield context. This Property should be called
ATTR_CONTEXT.

� To assign the configuration attribute for an Item to the attribute Feature that
stores the attribute’s value, you must define a Property on the Item that defines
the node path to the attribute Feature in the Model. This Property should be
called ATTR_n_PATH, where n is an integer that makes the name unique within
the scope of the current node. You can create multiple ATTR_n_PATH
Properties for the same node, with different values of n, to assign multiple
attribute Features to the node. This means that you can assign multiple
configuration attributes to the same Item. You can use the same ATTR_n_PATH
names in different nodes without conflict.

� To optionally propagate the value of a configuration attribute to the selected
children of an Item, you can define a Property on the Item that specifies a
propagation mode. This Property should be called ATTR_MODE.

� To optionally override, for a particular Item, the default flexfield segment name,
context, or mode specified by ATTR_NAME, ATTR_CONTEXT, or ATTR_
MODE, you can define Properties on the Item called ATTR_n_NAME, ATTR_n_

Caution: If you set the Maximum of any attribute Option Feature
to a value greater than 1, then you must modify the example
Functional Companion (Example A–2) to interpret the end user ’s
selection into a single attribute assignment.
Configuration Attributes 1-31

Implementing Configuration Attributes for Output
CONTEXT, or ATTR_n_MODE, respectively. In these Property names, n must
match n in the ATTR_n_PATH Property that points to the attribute Feature
whose segment name, context, or mode you are overriding.

Table 1–6 on page 1-32 provides details on the Properties used for defining
configuration attributes.

If you need to use different names for the Properties, then you must modify the
example Functional Companion, as described in Section 1.3.4 on page 1-42.

Table 1–6 Properties for Defining Configuration Attributes

Property Name Type Description

ATTR_NAME Text Default flexfield name that identifies the attribute Feature
metadata. The value of the Property is the name of the
corresponding segment in the descriptive flexfield. This
Property is mandatory for the methodology to work.

The ATTR_NAME values used in Example 1–6 on page 1-34
correspond to the attribute names in Example 1–4 on
page 1-34.

ATTR_CONTEXT Text Default flexfield context that identifies the attribute Feature
metadata. The value of the Property is the flexfield context
of all the corresponding segments in the descriptive
flexfield. This Property is mandatory for the methodology to
work.

ATTR_n_PATH Text Flexfield assignment for the Item. The value of the Property
is the node path to the attribute Feature that stores the
configuration attribute value for the Item. The node path is
relative to the Model that contains the Item. In naming this
Property, use the integer indicated by n to make the name of
the Property unique within the scope of the current node.
You can define otherProperties with the same name in other
nodes without conflict. This Property is mandatory for the
methodology to work.
1-32 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
1.3.3.2 Example of Model Structure

Example Structure
Assume the structure of the sample BOM Model shown in Example 1–3:

Example 1–3 Structure of Sample BOM Model

BOM-ATO1-Model
|__BOM-OC-VINYL
| |__BOM-Item1

ATTR_MODE Integer Default propagation mode of the configuration attribute
value. The value of the Property indicates the depth to
which the value of the current Item is propagated in the
Model. Propagation means that the Functional Companion
writes the value of the configuration attribute for the current
Item into the CZ_CONFIG_ATTRIBUTES table for all the
Items specified by the propagation mode. The modes are:

� 0 = Propagate the value only to the current Item. (This
is the default mode, if this Property is omitted.)

� 1 = Propagate the value to the current Item, and to its
immediate selected children.

� 2 = Propagate the value to the current Item, and to all
its selected descendents.

ATTR_n_NAME Text Overriding flexfield name. A Property with this name
overrides the default value specified by ATTR_NAME. Use
ATTR_n_NAME to specify a different flexfield segment for
the Item to which the Property ATTR_n_PATH is attached,
using the same value of n.

ATTR_n_CONTEXT Text Overriding flexfield context. A Property with this name
overrides the default value specified by ATTR_CONTEXT.
Use ATTR_n_CONTEXT to specify a different flexfield
context for the Item to which the Property ATTR_n_PATH is
attached, using the same value of n.

ATTR_n_MODE Integer Overriding propagation mode. A Property with this name
overrides the default value specified by ATTR_MODE. Use
ATTR_n_MODE to specify a different flexfield context for
the Item to which the Property ATTR_n_PATH is attached,
using the same value of n.

Table 1–6 (Cont.) Properties for Defining Configuration Attributes

Property Name Type Description
Configuration Attributes 1-33

Implementing Configuration Attributes for Output
| |__BOM-Item2
|__BOM-OC-WOOD
| |__BOM-Item3
| |__BOM-Item4
|__BOM-OC-HANDLE

|__BOM-PTO-Item5
|__BOM-PTO-Item6

Assume that you want to create the configuration attributes on that BOM Model
shown in Example 1–4:

Example 1–4 Configuration Attributes for Sample BOM Model

BOM-ATO1-Model
COMMON-ATTR-1
COMMON-ATTR-2

BOM-OC-VINYL
VINYL-ATTR-1
VINYL-ATTR-2

BOM-OC-WOOD
WOOD-ATTR-1
WOOD-ATTR-2

Assume that you have defined the descriptive flexfield contexts and segments for
these configuration attributes shown in Example 1–5:

Example 1–5 Flexfield Contexts and Segments for Sample BOM Model

COMMON
COMMON-ATTRIB1
COMMON-ATTRIB2

VINYL
VINYL-ATTRIB1
VINYL-ATTRIB2

WOOD
WOOD-ATTRIB1
WOOD-ATTRIB2

Given the preceding assumptions, you would use Oracle Configurator Developer to
create model structure like that shown in Example 1–6:

Example 1–6 Configuration Model Structure for Sample BOM Model

BOM-ATO1-Model
| <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature1">
1-34 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
| <ATTR_2_PATH="COMPONENT_ATTRIBUTES.Feature2">
| <ATTR_MODE=1>
|__BOM-OC-VINYL
| | <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature3">
| | <ATTR_1_MODE=1>
| | <ATTR_2_PATH="COMPONENT_ATTRIBUTES.Feature4">
| |__BOM-Item1
| |__BOM-Item2
|__BOM-OC-WOOD
| | <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature5">
| | <ATTR_2_PATH="COMPONENT_ATTRIBUTES.Feature6">
| |__BOM-Item3
| |__BOM-Item4
|__BOM-OC-HANDLE
| |__BOM-PTO-Item5
| |__BOM-PTO-Item6
|__COMPONENT-ATTRIBUTES

|__Feature1
| <ATTR_CONTEXT="COMMON">
| <ATTR_NAME="COMMON-ATTRIB1">
|__Feature2
| <ATTR_CONTEXT="COMMON">
| <ATTR_NAME="COMMON-ATTRIB2">
|__Feature3
| <ATTR_CONTEXT="VINYL">
| <ATTR_NAME="VINYL-ATTRIB1">
|__Feature4
| <ATTR_CONTEXT="VINYL">
| <ATTR_NAME="VINYL-ATTRIB2">
|__Feature5
| <ATTR_CONTEXT="WOOD">
| <ATTR_NAME="WOOD-ATTRIB1">
|__Feature6

<ATTR_CONTEXT="WOOD">
<ATTR_NAME="WOOD-ATTRIB2">

Explanation of Example
This explanation applies to Example 1–6 and the similar examples that follow in this
section.

� Properties of the nodes in the Model are indicated by the following convention:

<property_name="property_value">
Configuration Attributes 1-35

Implementing Configuration Attributes for Output
The angle brackets (< >) are not part of the Property name; their purpose is to
visually distinguish the Properties from the other elements of the Model
structure. The quotation marks around property_value are not themselves
part of the value; they indicate that the type of the Property value is Text.

� Feature1 through Feature6 are the attribute Features. These correspond to
the descriptive flexfield segments that you would have defined. The ATTR_
NAME values are the flexfield segment names shown in Example 1–5 on
page 1-34.

� The Properties of the attribute Features shown in Example 1–6 are described in
Table 1–6 on page 1-32.

� COMPONENT-ATTRIBUTES is a Component with Instances set to Minimum = 1
and Maximum = 1. Its purpose is to contain the attribute Features in a single
location, for convenient access. This is an optional design technique.

Database Results
With reference to the explanation of the table CZ_CONFIG_ATTRIBUTES given in
Section 1.3.1 on page 1-27, the design in Example 1–6 on page 1-34 would produce
database records like those shown in Table 1–7 on page 1-37. For the sake of
compactness, the combination of the columns CONFIG_HDR_ID, CONFIG_REV_
NBR, and CONFIG_ITEM_ID is represented here by the column named Item,
ATTRIBUTE_CATEGORY is represented here by the column named Context, and
only a few of the ATTRIBUTEn columns are shown. The ATTRIBUTEn columns
contain the name of the attribute Feature that contains their value, rather than the
value itself.

Note: It is not necessary to group attribute Features in a
Component, although that design is used in this example. The
attribute Features can be located anywhere in the Model, as long as
the ATTR_n_PATH Properties point to them. See Section 1.3.3.4 on
page 1-40 for an explanation of the rules for placement of attribute
Features.
1-36 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
1.3.3.3 Alternative Modeling Strategies

Reusing an Attribute Value for Multiple Items
It may be required that more than one Item needs the same configuration attribute
value. You can accomplish this by making the Items point to the same instance of
the attribute Feature that contains that value. You do this by setting the same value
for the attribute Property ATTR_n_PATH in each Item.

This strategy is shown in Example 1–7.

Example 1–7 Reusing an Attribute Value for Multiple Items

...
| |__BOM-Item1
| | <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature14">
| |__BOM-Item2
| <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature14">
|__COMPONENT-ATTRIBUTES

|__Feature14
| <ATTR_CONTEXT="VINYL">
| <ATTR_NAME="VINYL-ATTRIB3">

...

In this example, both BOM-Item1 and BOM-Item2 point to Feature14, so they
both define the value of ATTR_1_PATH as COMPONENT_ATTRIBUTES.Feature14.
The result is that the same configuration attribute value is written in CZ_CONFIG_
ATTRIBUTES for both of these Items.

Table 1–7 Example Attribute Properties (Database Results)

Item Context Attribute1 Attribute2 Attribute3 Attribute4

BOM-ATO1-Model COMMON (Feature1) (Feature2)

BOM-OC-VINYL COMMON (Feature1) (Feature2)

BOM-OC-VINYL VINYL (Feature3) (Feature4)

BOM-Item1 VINYL (Feature3)

BOM-Item2 VINYL (Feature3)

BOM-OC-WOOD COMMON (Feature1) (Feature2)

BOM-OC-WOOD WOOD (Feature5) (Feature6)

BOM-OC-HANDLE COMMON (Feature1) (Feature2)
Configuration Attributes 1-37

Implementing Configuration Attributes for Output
Database Results
With reference to the explanation for Table 1–7 on page 1-37, the design in
Example 1–7 on page 1-37 would produce database records like those shown in
Table 1–8 on page 1-38.

As an alternative, you could assign the attribute to the parent node in the Model
and use the ATTR_MODE property to propagate the value to all selected children.

Reusing an Attribute Value for Multiple Contexts
It may be required that the same configuration attribute value has to be written as
the value of more than one descriptive flexfield segment. You can accomplish this
by making the Item specify an overriding context (ATTR_n_CONTEXT) and
attribute name (ATTR_n_NAME) as part of the assignment.

This strategy is shown in Example 1–8.

Example 1–8 Reusing an Attribute Value for Multiple Contexts

...
| |__BOM-Item1
| <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature14">
| <ATTR_2_PATH="COMPONENT_ATTRIBUTES.Feature14">
| <ATTR_2_CONTEXT="SHIPPING">
| <ATTR_2_NAME="SHIPPING-ATTRIB1">
|__COMPONENT-ATTRIBUTES

|__Feature14
| <ATTR_CONTEXT="VINYL">
| <ATTR_NAME="VINYL-ATTRIB3">

...

Table 1–8 Reusing an Attribute Value for Multiple Items (Database Results)

Item Context Attribute1 Attribute2 Attribute3 Attribute4

...

BOM-Item1 VINYL (Feature14)

BOM-Item2 VINYL (Feature14)

...
1-38 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
Database Results
With reference to the explanation for Table 1–7 on page 1-37, the design in
Example 1–8 on page 1-38 would produce database records like those shown in
Table 1–9 on page 1-39.

Using Different Contexts with Different Values
Multiple contexts assigned to the same Item should be modeled as multiple
attribute Features with different ATTR_CONTEXT Property values. Then, the Item
will have ATTR_NAME Properties for each of those Features.

This strategy is shown in Example 1–9.

Example 1–9 Using Different Contexts with Different Values

...
| |__BOM-Item3
| <ATTR_1_PATH="COMPONENT_ATTRIBUTES.Feature15">
| <ATTR_2_PATH="COMPONENT_ATTRIBUTES.Feature16">
| <ATTR_3_PATH="COMPONENT_ATTRIBUTES.Feature17">
|__COMPONENT-ATTRIBUTES

|__Feature15
| <ATTR_CONTEXT="WOOD">
| <ATTR_NAME="WOOD-ATTRIB3">
|__Feature16
| <ATTR_CONTEXT="PRICING">
| <ATTR_NAME="PRICING-ATTRIB1">
|__Feature17
| <ATTR_CONTEXT="MFG">
| <ATTR_NAME="MFG-ATTRIB1">

...

Table 1–9 Reusing an Attribute Value for Multiple Contexts (Database Results)

Item Context Attribute1 Attribute2 Attribute3 Attribute4

...

BOM-Item1 VINYL (Feature14)

BOM-Item1 SHIPPING (Feature14)

...
Configuration Attributes 1-39

Implementing Configuration Attributes for Output
Database Results
With reference to the explanation for Table 1–7 on page 1-37, the design in
Example 1–9 on page 1-39 would produce database records like those shown in
Table 1–10 on page 1-40.

1.3.3.4 Special Considerations
This section covers some important considerations that may affect your
configuration model’s structure.

Referenced Models
Your Model can include child Models that are connected through References (as is
the case with most imported BOM Models). If this is the case, then the output
Functional Companion (described in Section 1.3.4 on page 1-42) traverses the entire
structure of the root Model and all other Models that it references, collecting
configuration attribute data from any attribute Properties whose names conform to
the conventions in Table 1–6 on page 1-32.

Location of Attribute Features
You must give careful thought to where you create attribute Features.

An attribute Feature can be located anywhere in a Model, providing that the
location is a node path that can be specified by the Property ATTR_n_PATH.
Consequently, the node path to an attribute Feature must be specified as relative to
the Model that contains the Item.

The output Functional Companion (described in Section 1.3.4 on page 1-42) first
finds the node that is the root of the entire configuration model, and then searches
from there for Properties whose names conform to the conventions in Table 1–6 on
page 1-32.

Table 1–10 Using Different Contexts with Different Values (Database Results)

Item Context Attribute1 Attribute2 Attribute3 Attribute4

...

BOM-Item3 WOOD (Feature15)

BOM-Item3 PRICING (Feature16)

BOM-Item3 MFG (Feature17)

...
1-40 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
Because the Functional Companion can find Features in child Models that are
connected through References (see Referenced Models on page 1-40), it is possible
to assign a configuration attribute value to an Item in a parent Model by pointing
(with the Property ATTR_n_PATH) to an attribute Feature in a referenced child
Model. Such a node path must include the names of any child Models between the
Model that contains the Item and the attribute Feature. However, a node path that
you can express as a Text Property value can only point down the tree of Models,
not upwards. Consequently, it is not possible to point to an attribute Feature in a
parent Model, and therefore you cannot assign a configuration attribute value from
a parent Model to an Item in a child Model.

To summarize: parent Models can use attribute Features defined in referenced child
Models; child Models cannot use attribute Features defined in parent Models.

If follows from the preceding facts that if you intend to use a referenced child Model
without the parent Model, then you must ensure that it contains all the attribute
Features that are employed as the configuration attributes on the Items in that
Model.

Multiple Component Instances in the Node Path
The node path to an attribute Feature, which is specified by the Property ATTR_n_
PATH, cannot include any Components that can be instantiated multiple times.
(Such a Component is one that has its Instances set to a Maximum greater than 1, so
that more than one runtime instance of the Component can be created and
configured.) The existence of multiple instances of a Component in a node path
makes the path ambiguous. Consequently, you cannot place any attribute Features
inside such a Component, because the output Functional Companion (described in
Section 1.3.4 on page 1-42) cannot resolve the correct path to that attribute Feature.

Required Items
Configuration attributes cannot be defined for required Items in a BOM Model,
because such Items are not configurable, and consequently are not imported when
you import the BOM Model into Oracle Configurator Developer to define a
configuration model. (See the Oracle Configurator Implementation Guide for details
about importing.)

1.3.3.5 Creating Functional Companion Rules
Set the Definition of the Functional Companion rule as shown in the following
table:
Configuration Attributes 1-41

Implementing Configuration Attributes for Output
For more details on defining Functional Companion rules, see the Oracle
Configuration Interface Object (CIO) Developer’s Guide. For details on defining other
kinds of configuration rules, see the Oracle Configurator Developer User’s Guide.

1.3.4 The Output Functional Companion
The output Functional Companion performs the work of transferring the
configuration attribute data from a configured runtime instance of the Model to the
CZ_CONFIG_ATTRIBUTES table.

A Functional Companion has been specially written to support the configuration
attribute methodology described in this chapter. The source code for this Functional
Companion is provided in Example A–2 on page A-11. This section describes its
operation at a high level.

For the Functional Companion to operate on the configuration model, you must
create a configuration rule that associates the Functional Companion with the
Model that contains the configuration attribute Properties, as illustrated in
Example 1–6 on page 1-34, and described in Section 1.3.3 on page 1-30.

The example Functional Companion does not have to be modified, if you modify
your Model in the manner described in Section 1.3.3. In modifying your Model, you
must follow the conventions described for naming Properties in order for the
Functional Companion to be able to collect values for the attribute Features.

Rule Definition Attribute Definition Value

Base Component The node from which the Functional Companion will search
for configuration attribute Properties. See Section 1.3.4 on
page 1-42 and Section 1.3.3.4 on page 1-40 for background.

Type Event-Driven

Implementation Java

Program String The name of the Java class that implements the output
Functional Companion. For the example, this is
WriteAttributes (Example A–2 on page A-11).

Note: The example Functional Companion assumes that your
Model is a BOM Model. If it is not, then see Section 1.3.7.1,
"Modifying the Functional Companion" on page 1-49.
1-42 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
Here is a high-level description of the operation of the output Functional
Companion:

1. During a configuration session, the end user selects options that, through
configuration rules, result in the entry of configuration attribute data in the
attribute Features of your Model.

2. The end user terminates the session successfully by clicking the Done button,
which saves the configuration.

3. The Functional Companion overrides the afterSave() method of
AutoFunctionalCompanion, so it is triggered after the configuration is
successfully saved.

4. The Functional Companion clears the CZ_CONFIG_ATTRIBUTES table of any
configuration attribute data for the Items in the current configuration model.
This prevents previously entered data from conflicting with data from the latest
configuration session.

5. The Functional Companion traverses the entire configuration model, collecting
the values of all the attribute Features by using the Properties described in
Section 1.3.3 on page 1-30. This collection includes the names of the descriptive
flexfield contexts and segment names for the flexfield data, recorded through
the ATTR_NAME and ATTR_CONTEXT Properties.

6. The Functional Companion queries the descriptive flexfield tables in the Oracle
Applications database for the name of each ATTRIBUTEn column in the CZ_
CONFIG_ATTRIBUTES table that corresponds to the context and segment
name for each configuration attribute value.

7. The Functional Companion prepares and executes a SQL statement that inserts
into the CZ_CONFIG_ATTRIBUTES table all of the configuration attribute data
from the latest configuration session for your configuration model.

1.3.5 Using Configuration Attributes in the Downstream Application
In order to use the configuration attribute data that is collected from a configuration
session, you must implement some significant customizations to your downstream
application. The specifics vary according to the particular application. This section
begins with an explanation of how the data is stored into the CZ_CONFIG_
ATTRIBUTES table (Section 1.3.5.1), and then outlines some strategies for
customizing the downstream application.
Configuration Attributes 1-43

Implementing Configuration Attributes for Output
1.3.5.1 Storing Output Data for Downstream Use
At the end of a configuration session, the end user closes the runtime Oracle
Configurator by clicking the Done button, which saves the configuration, triggering
the output Functional Companion (described in Section 1.3.4 on page 1-42). The
Functional Companion writes the saved configuration attribute data into the CZ_
CONFIG_ATTRIBUTES table in the following way:

� Traverse the tree of the configuration model, visiting each configuration item.

� For each configuration item, collect the values of all the attribute Properties that
help define configuration attributes, and the values of all the configuration
attributes themselves. The rules that govern how the attribute Properties point
to attribute Features are described in Table 1–6 on page 1-32.

� Obtain the identity of the current item in the configured model’s structure from
the runtime configuration instance, and write these values into the columns
CONFIG_HDR_ID, CONFIG_REV_NBR, CONFIG_ITEM_ID.

� Obtain the flexfield context for the configuration attribute from the value
defined for the Property ATTR_CONTEXT on the attribute Feature, and write
this value into ATTRIBUTE_CATEGORY.

The combination of CONFIG_HDR_ID, CONFIG_REV_NBR, CONFIG_ITEM_
ID, and ATTRIBUTE_CATEGORY constitutes the primary key for the table,
which uniquely identifies the configuration attribute value that applies to the
given item for the given context.

� Query the Oracle Applications flexfield tables to determine which
ATTRIBUTEn column of the CZ_CONFIG_ATTRIBUTES table is associated
with the value of the Property ATTR_NAME on the attribute Feature, and write
the value of the Feature (that is, the value of the configuration attribute) into
that ATTRIBUTEn column.

This description has been somewhat simplified for clarity. For details on how the
Functional Companion implements this database update, see the commented source
code in Example A–2 on page A-11.

Example of Storing Output Data
Assume a flexfield definition like the one shown in Figure 1–3 on page 1-30.
Assume, for some configuration item, that the value of the attribute Property
ATTR_CONTEXT is EAST, the value of the attribute Property ATTR_NAME is
COLOR, and that the attribute Property ATTR_n_PATH points to an attribute Feature
named COLOR, whose value is WHITE. The Functional Companion queries the
flexfield tables, specifying the value of the flexfield context as EAST, and the value
1-44 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
of the flexfield segment (that is, the configuration attribute) as COLOR. According to
the flexfield definition in Figure 1–3, the column in which to write the value of the
configuration attribute is ATTRIBUTE1, so the Functional Companion writes the
selected value of COLOR into ATTRIBUTE1, for the current configuration item.

Example 1–10 on page 1-45 shows a SQL query that displays the value of
ATTRIBUTE1 for a particular configuration item (which Oracle Configurator
identifies internally by a configuration header ID, revision number, and item ID),
and Example 1–11 on page 1-45 shows a result of the query.

Example 1–10 Query for Value of ATTRIBUTE1

SELECT
config_hdr_id, config_rev_nbr, config_item_id, attribute_category, attribute1

FROM
cz_config_attributes

WHERE -- a configuration item
config_hdr_id = 18900 AND config_rev_nbr = 1 AND config_item_id = 34

AND -- the flexfield context
attribute_category = 'EAST';

Example 1–11 Value of ATTRIBUTE1

CONFIG_HDR_ID CONFIG_REV_NBR CONFIG_ITEM_ID ATTRIBUTE_CA ATTRIBUTE1
------------- -------------- -------------- ------------ ------------

18900 1 34 EAST WHITE

1.3.5.2 Using Output Data in Downstream Applications
The configuration attribute output data stored in the CZ_CONFIG_ATTRIBUTES
table is available for use by downstream applications. However, you must put the
data into a form that your particular application can use, which probably requires
some degree of customization, depending on the specific characteristics of the
application. This section identifies some strategies for customization.

� You must write a custom procedure (see Section 1.3.5.3 on page 1-46) to retrieve
the data from the CZ_CONFIG_ATTRIBUTES table and insert it into the
descriptive flexfields used by the downstream application.

� You may decide to read the configuration attribute values directly from the CZ_
CONFIG_ATTRIBUTES table without inserting them into the downstream
application’s flexfields. However, doing so requires customizing the
Configuration Attributes 1-45

Implementing Configuration Attributes for Output
downstream application's forms to read the attributes and assigning them to the
correct data.

� For the Oracle Advanced Pricing application, the attributes must be stored as
flexfields on the order lines.

� Advanced Pricing is designed to read data from any table, and does not require
special customization to do so. For other Oracle Applications the attributes
must be stored in the interface table flexfields for those applications.

� For configuration attributes to be displayed in a form that displays an
auto-created final assembly (such as Flow Workstation), they need to be stored
as attributes on the flow schedules.

In Oracle Flow Manufacturing, the Flow Workstation calls an API that passes
out the Flow schedule number and returns the displayable fields. The API
constructs the relationship between the Flow schedule, a sales order, and the
configuration attributes related to that order, which are stored in the CZ_
CONFIG_ATTRIBUTES table.

� If you need to define configuration attributes on required BOM items in a
downstream application, then you must explicitly join them with their parents
and populate them to get attribute values.

The reason behind this requirement is that required items in a BOM are not
configurable, and consequently cannot be imported into an Oracle Configurator
configuration model. Therefore, they are not present during a configuration
session, and cannot be written into the CZ_CONFIG_ATTRIBUTES table by the
output Functional Companion.

1.3.5.3 Linking Configuration Attributes to Flexfields
You can use the following approach in designing a custom procedure (which you
must write) that links the information in a configuration attribute to a flexfield for a
downstream application:

� A line ID is passed as an argument to the custom procedure. The line ID is a
primary key that points to the host application’s equivalent of a configurable
line item in an order or quote.

� The line item contains a foreign key formed from the columns CONFIG_HDR_
ID, CONFIG_REV_NBR, CONFIG_ITEM_ID in CZ_CONFIG_ATTRIBUTES.
This key points to the set of records in CZ_CONFIG_ATTRIBUTES associated
with the selected items in the order or quote.
1-46 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
� Use CZ_CONFIG_ATTRIBUTES.ATTRIBUTE_CATEGORY to provide a
description of the flexfields that apply to the context for the particular
component from the order or quote.

� The flexfield definition contains information about the names of the columns
(ATTRIBUTEn, and so on) in CZ_CONFIG_ATTRIBUTES that contain the
desired configuration attributes.

Alternatively, depending on your implementation, the reading code in your
custom procedure could assume certain hardcoded column names for each
segment in a particular context.

1.3.5.4 Downstream User Interfaces
Downstream, these are the ways to use configuration attributes in an application’s
user interface:

� Using the standard Oracle Applications UI with the application flexfields (see
Oracle Applications User Interface with Flexfields on page 1-47)

� Directly feeding the configuration attribute table into a customized host
application UI (see Custom Application User Interface on page 1-48)

The choice of UI depends on your needs.

Oracle Applications User Interface with Flexfields
The data in the populated table CZ_CONFIG_ATTRIBUTES needs to be inserted
into the flexfields on the downstream application table. For that purpose you must
write a custom procedure to populate those flexfields on the target records. See the
information on Oracle Workflow APIs in the Oracle Workflow Guide for details. See
Figure 1–4 on page 1-47.

Figure 1–4 Flow for Oracle Applications UI with Flexfields

It is also acceptable to join the configuration attribute table before populating it in
the application's schema, if the resulting data is a derivation from the configuration
and legacy attributes. In that case, writing to the downstream table's flexfields after
calculations could be more efficient than separating the steps in different tables. See
Figure 1–5 on page 1-48.
Configuration Attributes 1-47

Implementing Configuration Attributes for Output
Figure 1–5 Flow for Oracle Applications UI with Flexfields with Joined Tables

Custom Application User Interface
For custom-built UIs, there may be no need to populate the flexfields on the
downstream application’s table. Instead, you might be able to join the application
table with CZ_CONFIG_ATTRIBUTES. This is a valid approach if the data that is
represented by the configuration attributes is used by the downstream application
only for display purposes. See Figure 1–6 on page 1-48.

Figure 1–6 Flow for Custom Application UI

1.3.6 Maintaining the Output Solution
You must manually update your Model in Oracle Configurator Developer if the
following are changed:

Note: The Oracle Advanced Pricing application is designed to
read data from any table, and does not require special
customization to do so.

Note: Details about possible customizations depend on the
downstream application and your implementation. Please refer to
the relevant documentation.
1-48 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
� The flexfield definitions in Oracle Applications. Changes to the flexfield
definitions might include changes to context or attribute column assignments.

� The BOM (in Oracle Bills of Materials) that is the basis for your imported
Model. Changes to the Bill of Material might include the addition of an Item
that has configuration attributes.

Bill of Material changes are reflected by refreshing your Model. See the Oracle
Configurator Implementation Guide for details on refreshing models. Performing a
refresh of your model may result in requiring changes to the structure of Features
and Properties described in Section 1.3.3, "Modifying the Model" on page 1-30.

1.3.7 Optional Flows
This section describes optional tasks that you may need to perform that are not part
of the flow described in Figure 1–1 on page 1-26.

1.3.7.1 Modifying the Functional Companion
This section describes potential modifications to the example Functional
Companion.

The example Functional Companion provided with this methodology
(Example A–2 on page A-11) does not have to be modified, if you modify your
Model in the manner described in Section 1.3.3 on page 1-30, and if your Model is a
BOM Model. If your Model is a Component (non-BOM) type, then see Using
Non-BOM Models on page 1-50.

Modifying the Property Names
In modifying your Model, you must follow the conventions for naming Properties
described in Table 1–6 on page 1-32 in order for the Functional Companion to be
able to collect values for the attribute Features. If you want to use different Property

Caution: If you do not follow the model design described in
Section 1.3.3 on page 1-30, the output Functional Companion, as
provided, will not work.

Note: Be sure to check the Oracle Configuration Interface Object
(CIO) Developer’s Guide for a description of the Java development
skills required for success with Functional Companions.
Configuration Attributes 1-49

Implementing Configuration Attributes for Output
names, then you must modify certain character strings, which are typographically
highlighted in Example 1–12 on page 1-50, so that they match your own Property
names.

Example 1–12 Strings for Property Names in the Functional Companion

...
private Map getAttributes(BomNode node) {

...
if (name.startsWith("ATTR_")) {

...
int beginningIndex = new String("ATTR_"). length();
StringTokenizer tokens = new

StringTokenizer(name.substring(beginningIndex), "_", false);
...

if (name.endsWith("PATH")) {
...

else if (name.endsWith("MODE")) {
...

else if (name.endsWith("CONTEXT")) {
...

else if (name.endsWith("NAME")) {
...

private class Attribute implements Comparable {
...

Property prop = m_feature.getPropertyByName("ATTR_CONTEXT");
...

Property prop = m_feature.getPropertyByName("ATTR_NAME");

Using Non-BOM Models
The example Functional Companion assumes that your Model is a BOM Model, like
the Model in Example 1–6 on page 1-34. If your Model is a Component type, then
you must modify the traverseBomTree() method of the Functional Companion
to test whether the Component containing a given configuration attribute Item is a
Model, so that the value of the ATTR_n_PATH Property can be resolved correctly.
See the description of the ATTR_n_PATH Property described in Table 1–6 on
page 1-32 for background. (For clarity, you may also wish to rename the
traverseBomTree() method to indicate that it is not traversing a BOM Model.)

In order to determine whether a Component is a Model (that is, the root of the
configuration, or a Reference), use the following test:

private void traverseBomTree(RuntimeNode node, List parentAttributes) {
1-50 Oracle Configurator Methodologies

Implementing Configuration Attributes for Output
...
if (node.getReferringOrDatabaseID() != node.getDatabaseID()) {

// the Component is a Model, so collect its attributes
...
}

...
}

Configuration Attributes 1-51

Implementing Configuration Attributes for Output
1-52 Oracle Configurator Methodologies

Part II

Appendices

Part II contains the following appendices:

� Code Examples

Code Exam
A

Code Examples

This chapter contains code examples that support other chapters of this document.
These examples are fuller and longer than the examples provided in the rest of this
document, which are often fragments. See the cited background sections for details.

You should consult these other documents for details on the tasks described in this
section:

� For information on how to write and compile Functional Companions, and on
how to incorporate them into your configuration model, see the Oracle
Configuration Interface Object (CIO) Developer’s Guide.

� For information on how to install Functional Companions, see the Oracle
Configurator Installation Guide.

� For an explanation of updating configurations, see the Oracle Configurator
Developer User’s Guide.

Note: Consult the Oracle Configurator Implementation Guide and the
Oracle Configuration Interface Object (CIO) Developer’s Guide for
examples that support other features of Oracle Configurator.

Table A–1 Code Examples Provided

Purpose of Example Example

Section A.1, "Using Configuration
Attributes for Input"

Example A–1, "Using Configuration Attributes for
Input (CfgInputExample.java)"

Section A.2, "Using Configuration
Attributes for Output"

Example A–2, "Using Configuration Attributes for
Output (WriteAttributes.java)"
ples A-1

Using Configuration Attributes for Input
� For an details on how to build a configuration model that enables you to update
configurations, see the Oracle Configurator Developer User’s Guide.

A.1 Using Configuration Attributes for Input
This example demonstrates how to use a Functional Companion to transfer
configuration attribute data into a configuration model from a host application.

� To use the example, you must modify it in accordance with the instructions in
Section 1.2.4, "Modifying the Functional Companion Example" on page 1-15.

� For details about the specific example that is supported by this code, see
Section 1.2.1, "Example for Implementing Input Configuration Attributes" on
page 1-7.

� For general background, see Section 1.2, "Implementing Configuration
Attributes for Input" on page 1-7.

Example A–1 Using Configuration Attributes for Input (CfgInputExample.java)

/*===+
| Copyright (c) 2002 Oracle Corporation, Redwood Shores, CA, USA |
| All rights reserved. |
+===+
| FILENAME
| CfgInputExample.java
+===*/

import oracle.apps.cz.cio.AutoFunctionalCompanion;
import oracle.apps.cz.cio.IRuntimeNode;
import oracle.apps.cz.cio.IOption;
import oracle.apps.cz.cio.IOptionFeature;
import oracle.apps.cz.cio.IState;
import oracle.apps.cz.cio.LogicalException;
import oracle.apps.cz.cio.NoSuchChildException;

Note: If you have installed Oracle Configurator Developer and
the Oracle Configurator documentation, then the source code for
Example A–1 is available as the file CfgInputExample.java, in
the folder OC_Developer_installation\doc\code_
examples.
A-2 Oracle Configurator Methodologies

Using Configuration Attributes for Input
import oracle.apps.cz.cio.TransactionException;
import oracle.apps.cz.utilities.Assert;
import oracle.apps.cz.utilities.CheckedToUncheckedException;
import oracle.apps.cz.utilities.NameValuePairSet;

import java.sql.*;

import com.sun.java.util.collections.List;
import com.sun.java.util.collections.Iterator;

/**
* CfgInputExample provides the skeleton code needed to transfer
* parameters from the database into the model.
*
* This Functional Companion must be attached to each model that it
* is to work with. Use Oracle Configurator Developer to create the
* relationship between model and companion.
*/

// It is strongly recommended that only input parameters be transferred
// from the database to the model. That is, this companion should not
// make calculations or decide validity of a configuration. The model
// should use rules to perform those operations. The maintenance of the model
// will be made easier if the Functional Companion is kept simple.

// This companion is written to run from Oracle Quoting.
//
// The model that this FC is attached to should have an Option Feature
// named 'US_State' (case sensitive) with some, if not all, Options
// that represent each state of the United States. The names of the
// Options should be the uppercase two-letter postal codes for each state
// (for example, CA, NY, MA, RI).

// You must extend AutoFunctionalCompanion in order to use the onNew()
// and onRestore() methods.

public class CfgInputExample extends AutoFunctionalCompanion {

private Long mOrderLineNumber = null; // Retrieved from the user's session
private Long mApplicationId = null; // From the user session information
private String mUsState = null;

public void onNew() throws LogicalException {
doInputAttributeTransfer();
Code Examples A-3

Using Configuration Attributes for Input
}

public void onRestore() throws LogicalException {

// Implementers have to decide if the transfer of
// attributes needs to occur during the restoration of
// a saved model. In most cases, the best practice is to
// retrieve the current value from the database since
// the value can be changed from the host application.

// If an attribute is truly only set once, when the configuration
// is newly created, then the attribute should not be
// restored. Use inititial requests, which are described in the
// Oracle CIO Developer's Guide.

doInputAttributeTransfer();

}

/**
* Transfers input attribute data into a configuration model.
*
*/

private void doInputAttributeTransfer() throws LogicalException {

// The general steps in passing config attributes are:
// 1. Get the session information.
// 2. Use the database to get the information to be transferred into the model.
// 3. Set the model values.

getSessionParameters();

// If there are no parameters for this session then continue.

if (mOrderLineNumber == null) return;

// Implementers have to decide if attributes should be treated
// differently, depending on which application is calling Oracle
// Configurator. In this example assume that the information
// should be transferred only for Oracle Quoting.

if (mApplicationId.longValue() != 697) return;

getInputAttributes();
transferInputAttributesIntoModel();
A-4 Oracle Configurator Methodologies

Using Configuration Attributes for Input
}

/**
* Retrieves the session information from the configuration
* and makes the information available.
*/

private void getSessionParameters() {

// The initialization message holds the parameters supplied by the
// application when Oracle Configurator was started.

NameValuePairSet initParams = getRuntimeNode().getConfiguration().getInitParameters();

String paramValue = null;

String paramValue = (String)initParams.getValueByName("client_line");

// Each host application calling Oracle Configurator can pass this parameter
// with different content. You need to cast the type of the parameter value
// if the host application does not pass a string for the client_line.

if (paramValue != null) mOrderLineNumber = Long.valueOf(paramValue);

// This example only uses the client_line parameter.
// To use other parameters, write additional get and set statements for them.

// The other parameters that may be useful, depending on the application, are:
// client_header
// client_line_detail
// The remainder of the initialization parameters are described
// in the Session Initialization chapter.

// You must identify the host application that called Oracle Configurator.

paramValue = (String)initParams.getValueByName("calling_application_id");
if (paramValue != null) mApplicationId = Long.valueOf(paramValue);

}

/**
* Retrieves the input attributes from the database.
*/

private void getInputAttributes() {

Connection conn = getRuntimeNode().getConfiguration().getContext().getJDBCConnection();
PreparedStatement pStmt = null;
Code Examples A-5

Using Configuration Attributes for Input
ResultSet rs;
int ret;

try {

// Define a custom query to extract the desired database value
// for the configuration attribute.
// In this case, get the value for the U.S. state associated
// with a quote line.

try {

if (mApplicationId.longValue() == 697) {

String sql = "select p.state "
+ "from hz_parties p, "
+ " aso_quote_headers_all_v q, "
+ " ASO_QUOTE_LINES_ALL_V l "
+ "where p.party_id = q.cust_account_id "
+ "and l.quote_header_id = q.quote_header_id "
+ "and l.quote_line_id = ?";

// Prepared statements generally provide good performance.

pStmt = conn.prepareStatement(sql);

// Put the line number into the first (and only) parameter
// of the PreparedStatement, for quote_line_id.

pStmt.setLong(1, mOrderLineNumber.longValue());

// Execute the query, putting the results into the rows of the ResultSet.

rs = pStmt.executeQuery();

// Iterate through the ResultSet and get the first value.

try {
if (rs.next()) {

// If a record exists, retrieve the value(s) and consider if
// there are nulls.

// The first (and only) return value in this example is from HZ_PARTIES.STATE.
// Store the value from column 1 of the ResultSet into mUsState.
A-6 Oracle Configurator Methodologies

Using Configuration Attributes for Input
mUsState = rs.getString(1);

// Check to see if the value was null. This check is critical
// for integer and other data types.

if (rs.wasNull()) mUsState = null;
}
else {

// If no record exists in the ResultSet, raise an exception and
// provide a message.

// Since this Functional Companion is being called as
// part of a regular process, the FC expects that the
// values of client_line and other parameters are
// correct. They may not be correct, or (more likely)
// the query is not accurate.

// Put as much useful information into the error message as possible.

String s = "CfgInputExample.getInputAttributes: Did not find record for "
+ "client_line " + mOrderLineNumber + ".\n\n"
+ "query = " + sql;

throw new RuntimeException(s);
}

}
finally {

// Make sure that all ResultSets are closed. If they are
// not closed, then it is easy to use up the allotment of
// database cursors.

rs.close();
}

}
}
finally {

// Make sure that all prepared statements are closed. If they are
// not closed, then it is easy to use up various database resources.

if (pStmt != null) pStmt.close();
}

Code Examples A-7

Using Configuration Attributes for Input
}
catch (SQLException se) {

// Any problem with the database will
// stop the session. The error will be logged.

throw new RuntimeException("CfgInputExample.getInputAttributes: " + se.toString());
}

}

/**
* Transfers the information from the database into the model structure.
*/

private void transferInputAttributesIntoModel() throws LogicalException {

// Use a method customized for the specific configuration attribute.

transferUsState();
}

/**
* Specialized method to transfer attribute data
* into an Option Feature with a specified name.
*/

private void transferUsState()throws LogicalException {

// Find the model element(s) that will be set with the
// configuration attribute value.

// In this example, search for a Feature named "US_State". This
// feature has Options corresponding to the postal codes for some
// individual states in the United States.

// This FC starts its search from the model node that the FC is
// associated with, and stops when it finds the first object named
// "US_State".

// If, for any reason, there is not a "US_State" then return. The model's
// configuration rules or defaults will provide the value.

// If an attribute is truly only set once, when the
// configuration is newly created, then use initial requests,
// which are described in the Oracle CIO Developer's Guide.

if (mUsState == null) return;
A-8 Oracle Configurator Methodologies

Using Configuration Attributes for Input
IRuntimeNode rtNode = findFirstNodeByName(getRuntimeNode(), "US_State");

// Implementers have to decide whether failing to find the node
// should be treated as an exception. In this example, it is not
// an issue if the model lacks the model element.

if (rtNode == null) return;

// Implementers should verify that the node is what is expected.
// Changes to the configuration model can lead to runtime errors,
// such as ClassCastExceptions, if there is no verification.

if (rtNode.getType() != IRuntimeNode.OPTION_FEATURE) return;

// Find the option for the US State. In this example, if the option is not found
// do not consider it a problem. The model's configuration rules or defaults
// will decide what to do.

// Use the attribute value retrieved from the database to find the
// Option with the matching name.

IOption option = (IOption)findFirstNodeByName(rtNode, mUsState);
if (option == null) return;

// Set the value of the attribute Feature, by selecting the Option.

try {
option.select();

}
catch(TransactionException te) {

// There should be never be a problem with CIO transactions. If one
// occurs then provide as much informaiton as possible.

throw new RuntimeException("CfgInputExample.transferInputAttributesIntoModel: " +
te.toString());

}
}

/**
* Utility method to locate the first model node with a specified name
* found in a search starting from the current node.
Code Examples A-9

Using Configuration Attributes for Output
*/
private IRuntimeNode findFirstNodeByName(IRuntimeNode parent, String name) {

IRuntimeNode found = null;

if (parent == null) return null;
if (!parent.hasChildren()) return null;

try {
found = parent.getChildByName(name);

}
catch (NoSuchChildException nsce) {

// Recurse through the children

Iterator it = parent.getChildren().iterator();
while (it.hasNext()) {

found = findFirstNodeByName((IRuntimeNode)it.next(), name);
if (found != null) return found;

}
}
return found;

}
}

A.2 Using Configuration Attributes for Output
This example demonstrates how to use a Functional Companion to transfer
configuration attribute data from a configuration model into a host application.

� To use the example, you may modify it in accordance with the instructions in
Section 1.3.4, "The Output Functional Companion" on page 1-42.

� For general background, see Section 1.3, "Implementing Configuration
Attributes for Output" on page 1-25.

Note: If you have installed Oracle Configurator Developer and
the Oracle Configurator documentation, then the source code for
Example A–1 is available as the file WriteAttributes.java, in
the folder OC_Developer_installation\doc\code_
examples.
A-10 Oracle Configurator Methodologies

Using Configuration Attributes for Output
Example A–2 Using Configuration Attributes for Output (WriteAttributes.java)

/*===+
| Copyright (c) 2002 Oracle Corporation, Redwood Shores, CA, USA |
| All rights reserved. |
+===+
| FILENAME |
| WriteAttributes.java |
| DESCRIPTION |
| |
| NOTES |
| |
| DEPENDENCIES |
| |
| HISTORY |
| 26-Nov-01 Anupam Miharia Created. |
+===*/

import oracle.apps.fnd.common.Context;
import oracle.apps.cz.cio.AutoFunctionalCompanion;
import oracle.apps.cz.cio.Property;
import oracle.apps.cz.cio.OptionFeatureNode;
import oracle.apps.cz.cio.BooleanFeature;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.CountFeature;
import oracle.apps.cz.cio.IntegerNode;
import oracle.apps.cz.cio.DecimalNode;
import oracle.apps.cz.cio.ComponentSet;
import oracle.apps.cz.cio.NoSuchChildException;
import oracle.apps.cz.cio.BomNode;
import oracle.apps.cz.cio.TextNode;
import oracle.apps.cz.cio.BomModel;
import oracle.apps.cz.cio.RuntimeNode;
import oracle.apps.cz.cio.IRuntimeNode;
import com.sun.java.util.collections.Map;
import com.sun.java.util.collections.Collection;
import com.sun.java.util.collections.HashMap;
import com.sun.java.util.collections.ArrayList;
import com.sun.java.util.collections.Iterator;
import com.sun.java.util.collections.TreeSet;
import com.sun.java.util.collections.List;
import java.util.StringTokenizer;
import java.sql.Connection;
import java.sql.PreparedStatement;
Code Examples A-11

Using Configuration Attributes for Output
import java.sql.SQLException;
import java.sql.ResultSet;

/**
* @author Anupam Miharia
*
* This is a sample implementation of an afterSave Functional Companion
* that is used to write the attributes associated with BOM nodes to
* the CZ_CONFIG_ATTRIBUTES table. The implementation is based on the
* attribute association as described in the documentation.
*/
public class WriteAttributes extends AutoFunctionalCompanion
{

public static final int ATTR_MODE_CURRENT = 0;
public static final int ATTR_MODE_CURRENT_AND_IMMEDIATE_CHILDREN = 1;
public static final int ATTR_MODE_CURRENT_AND_ALL_CHILDREN = 2;
Configuration config = null;
/**
* An afterSave FC is called after saving the configuration.
* This collects all the attributes from the BOM nodes and writes
* them to the database.
*/

public void afterSave() {
config = getRuntimeNode().getConfiguration();
// First, clear all attribute data for this configuration from
// the CZ_CONFIG_ATTRIBUTES table.
try {

clearConfigAttributes(config);
} catch (SQLException sqle) {

throw new RuntimeException("Error in clearing the previous attribute data");
}
// Starting from the root, call traverseBomTree on all top level BOM nodes.
RuntimeNode root = (RuntimeNode)config.getRootComponent();
if (root instanceof BomNode) {

traverseBomTree(root, new ArrayList());
} else {

Iterator iter = root.getChildren().iterator();
while (iter.hasNext()) {

RuntimeNode child = (RuntimeNode)iter.next();
if (child instanceof BomNode || child instanceof ComponentSet) {

traverseBomTree(child, new ArrayList());
}

}
}

}

A-12 Oracle Configurator Methodologies

Using Configuration Attributes for Output
/**
* Iterates over the BOM tree and writes the attributes for each BOM node.
* @param node Can either be a BomNode or a ComponentSet.
* @param parentAttributes List of attributes from ancestors that is to be
* applied to this node.
*/

private void traverseBomTree(RuntimeNode node, List parentAttributes) {
List childAttribs = null;

if (!(node instanceof ComponentSet)) {
BomNode bomNode = (BomNode)node;

// Write attribute data only for selected BOM nodes
if (!bomNode.isSelected()) return;

// First get the attributes corresponding to this BOM node
Map attributes = getAttributes(bomNode);

// Then group the attrbutes of this node with those from its ancestors
// and write the combined set to the CZ_CONFIG_ATTRIBUTES table.
// Also get the list of attributes that have to be applied to this
// node's children.
childAttribs = groupAndWriteAttributes(bomNode, attributes, parentAttributes);

} else {
// Pass along the parent's attributes to the children for a ComponentSet.
childAttribs = parentAttributes;

}

// Now recursively visit all the children subtrees passing along the list
// of attributes that have to be applied to its children.
Iterator iter = node.getChildren().iterator();
while (iter.hasNext()) {

RuntimeNode child = (RuntimeNode)iter.next();
if (child instanceof BomNode || child instanceof ComponentSet) {

traverseBomTree(child, childAttribs);
}

}
}

/**
* Group the attributes together by:
* 1. Combining the attributes passed from the ancestors with the current set.
* 2. Combining the attributes that have a commmon context in a single list.
* 3. Creating a list of child Attributes to be applied to the node's children.
Code Examples A-13

Using Configuration Attributes for Output
* @param node The BOM node whose attributes are to be written
* @param attributes Attributes corresponding to the given BOM node
* @param parentAttributes List of attributes from ancestors that is to be
* applied to the given BOM node.
*/

private List groupAndWriteAttributes(BomNode node, Map attributes, List parentAttributes) {
// Attributes from parent go only one level deep if their mode = 1.
// Set their mode = 0 here so that they don't propagate further.
Iterator iter = parentAttributes.iterator();
while (iter.hasNext()) {

Attribute attr = (Attribute)iter.next();
if (attr.getMode() == ATTR_MODE_CURRENT_AND_IMMEDIATE_CHILDREN) {

attr.setMode(ATTR_MODE_CURRENT);
}

}
// List of attributes from this node to be applied to children.
List childAttributes = new ArrayList();
// Create an aggregate map of attributes collected by context because
// we can have multiple attributes for this node having a common context.
// The key of this map is the attribute context and the value is
// a HashMap of attribute name and attribute value.
HashMap ctxAttrsMap = new HashMap();
// Combine the list of attributes for this node with that from the parent.
// Make it a Set so that all duplicate attributes are eliminated.
// Look at definition of Attribute.equals().
Collection allAttributes = new TreeSet();
allAttributes.addAll(attributes.values());
allAttributes.addAll(parentAttributes);

// Iterate over the combined list of attributes.
iter = allAttributes.iterator();
while (iter.hasNext()) {

Attribute attribute = (Attribute)iter.next();

// If the attribute mode is not CURRENT-only then add it to the
// childAttributes list
if (attribute.getMode() != ATTR_MODE_CURRENT) {

childAttributes.add(attribute);
}
// We have to combine all attributes belonging to this node by context
// as well, so that it can be written as a single row in the
// CZ_CONFIG_ATTRIBUTES table.
String ctx = attribute.getAttrContext();

HashMap values = (HashMap)ctxAttrsMap.get(ctx);
A-14 Oracle Configurator Methodologies

Using Configuration Attributes for Output
if (values == null) {
values = new HashMap();
ctxAttrsMap.put(ctx, values);

}
if (attribute.hasBooleanValue()) {

values.put(attribute.getName(), new Boolean(attribute.getBooleanValue()));
} else if (attribute.hasIntegerValue()) {

values.put(attribute.getName(), new Integer(attribute.getIntValue()));
} else if (attribute.hasDecimalValue()) {

values.put(attribute.getName(), new Double(attribute.getDecimalValue()));
} else if (attribute.hasStringValue()) {

values.put(attribute.getName(), attribute.getStringValue());
} else {

values.put(attribute.getName(), "NULL");
}

}

// Write all the attributes to the database after we are done grouping
// them appropriately.
writeAttributes(node, ctxAttrsMap);
return childAttributes;

}

/**
* Writes the attributes for the given node to the database.
* The parameter 'attributes' is a Map where the key is the attribute context
* and the value is a map of attribute name and attribute value.
*/

private void writeAttributes(BomNode node, Map attributes) {
Iterator iter = attributes.keySet().iterator();
while (iter.hasNext()) {

String context = (String)iter.next();
Map nameValuePairs = (Map) attributes.get(context);
insertAttributes(node, context, nameValuePairs, config.getContext());

}
}

/**
* Inserts the attributes belonging to a given node and context into
* the CZ_CONFIG_ATTRIBUTES table.
*/

public int insertAttributes (BomNode node, String attrContext, Map attributes, Context ctx) {
Connection conn = ctx.getJDBCConnection(ctx);
PreparedStatement pStmt = null;
int ret;
Code Examples A-15

Using Configuration Attributes for Output
try {
try {

String insertString = " INSERT INTO CZ_CONFIG_ATTRIBUTES (CONFIG_HDR_ID, CONFIG_REV_NBR,
CONFIG_ITEM_ID, ATTRIBUTE_CATEGORY";

String valueString = " VALUES(?,?,?,?";

// Build an insert string based on the attribute name for the attribute context.
Collection keys = attributes.keySet();
Iterator keyIter = keys.iterator();
while (keyIter.hasNext()) {

insertString = insertString + "," + getAttributeFieldName (attrContext,
(String)keyIter.next(), ctx);

valueString = valueString + ",?";
}
insertString = insertString + ")";
valueString = valueString + ")";

String sql = insertString + valueString;
pStmt = conn.prepareStatement(sql);

//Bind/set values to the parameters
// Add config_hdr_id.
pStmt.setLong(1,config.getConfigHeaderIdLong());
// Add config_rev_nbr.
pStmt.setLong(2,config.getConfigHeaderRevisionLong());
// Add config_item_id.
pStmt.setLong(3,node.getConfigItemID());
// Add flexfield context for attribute.
pStmt.setString(4,attrContext);

// Iterate over attributes.
int n = 5;
List attrValues = new ArrayList();
attrValues.addAll(attributes.values());
Iterator iter = attrValues.iterator();

while (iter.hasNext()) {
pStmt.setString(n++, iter.next().toString());

}

ret = pStmt.executeUpdate();
} finally {

if(pStmt != null) pStmt.close();
}

A-16 Oracle Configurator Methodologies

Using Configuration Attributes for Output
} catch (SQLException e) {
throw new RuntimeException("Error Inserting into CZ_CONFIG_ATTRIBUTES table" + e);

}
return ret;

}

/**
* Return the column name in CZ_CONFIG_ATTRIBUTES to write this attribute value to,
* given an attribute context name, attribute name, and database context.
*/

public String getAttributeFieldName (String attrContext, String attribute, Context ctx) {
Connection conn = ctx.getJDBCConnection(ctx);
ResultSet rs = null;
PreparedStatement pStmt = null;
String sql, columnName = null;

try {
try {

sql = "SELECT dfu.application_column_name " +
"FROM FND_DESCR_FLEX_COLUMN_USAGES DFU, " +
"FND_DESCRIPTIVE_FLEXS FDL , FND_APPLICATION FAN " +
"WHERE fan.application_short_name = 'CZ' " +

"AND dfu.application_id = fan.application_id " +
"AND fdl.application_id = fan.application_id " +
"AND fdl.APPLICATION_TABLE_NAME = 'CZ_CONFIG_ATTRIBUTES' " +
"AND dfu.descriptive_flexfield_name = fdl.descriptive_flexfield_name " +
"AND dfu.descriptive_flex_context_code = ? " +
"AND end_user_column_name = ? ";

pStmt = conn.prepareStatement(sql);
pStmt.setString(1,attrContext);
pStmt.setString(2,attribute);

rs = pStmt.executeQuery();
if (rs.next()) {

columnName = rs.getString(1);
} else {

throw new RuntimeException("No column name found for context = " + attrContext + " and
attribute = " + attribute);

}
} finally {

// close all
if (rs != null) rs.close();
if (pStmt != null) pStmt.close();
Code Examples A-17

Using Configuration Attributes for Output
}
} catch (SQLException e) {

throw new RuntimeException("Error querying attribute names");
}

return columnName;
}

/**
* Clears all attribute data for this configuration from
* the CZ_CONFIG_ATTRIBUTES table.
*/

public void clearConfigAttributes(Configuration config) throws SQLException {
long configHdrId = config.getConfigHeaderIdLong();
long configHdrRev = config.getConfigHeaderRevisionLong();
Connection conn = config.getContext().getJDBCConnection();
PreparedStatement pStmt = null;
int ret;
try {

String sql = "DELETE FROM CZ_CONFIG_ATTRIBUTES WHERE CONFIG_HDR_ID=? AND CONFIG_REV_NBR=?";
pStmt = conn.prepareStatement(sql);
pStmt.setLong(1, configHdrId);
pStmt.setLong(2, configHdrRev);
ret = pStmt.executeUpdate();

} finally {
if (pStmt != null) pStmt.close();

}
}

/**
* Returns a map of attributes associated with this BOM node by reading
* its properties from the database. The map is keyed by the attribute
* index and the values are Attribute objects.
*/

private Map getAttributes(BomNode node) {
HashMap attributes = new HashMap();
int defaultMode = 0;
// Iterate over the properties and see if we have any attribute properties.
Iterator iter = node.getProperties().iterator();
while (iter.hasNext()) {

Property prop = (Property)iter.next();
String name = prop.getName();
// All attribute properties start with "ATTR_".
if (name.startsWith("ATTR_")) {
A-18 Oracle Configurator Methodologies

Using Configuration Attributes for Output
// Get the index of this attribute.
int index = 0;
int beginningIndex = new String("ATTR_"). length();
StringTokenizer tokens = new StringTokenizer(name.substring(beginningIndex), "_", false);
if (tokens.hasMoreTokens()) {

try {
index = Integer.parseInt(tokens.nextToken());

} catch (NumberFormatException nfe) {
// This could be the default mode.
if (name.endsWith("MODE")) {

defaultMode = prop.getIntValue();
continue;

} else {
throw new RuntimeException("Attribute properties on BOM nodes should follow " +

"the pattern ATTR_int_* where 'int' is an integer. ");
}

}
}
// If we do not already have an attribute with this index, create one
// and put it in the map.
Attribute attr = (Attribute)attributes.get(new Integer(index));
if (attr == null) {

attr = new Attribute(node, index);
attributes.put(new Integer(index), attr);

}
// Assign the appropriate property to this attribute.
if (name.endsWith("PATH")) {

attr.setPath(prop.getStringValue());
}
else if (name.endsWith("MODE")) {

attr.setMode(prop.getIntValue());
}
else if (name.endsWith("CONTEXT")) {

attr.setAttrContext(prop.getStringValue());
}
else if (name.endsWith("NAME")) {

attr.setName(prop.getStringValue());
}
else {

throw new RuntimeException("Attribute properties on BOM nodes should end up with " +
"with either \"PATH\", \"MODE\", \"CONTEXT\", or

\"NAME\"");
}

}
}

Code Examples A-19

Using Configuration Attributes for Output
// Apply the default mode on all attributes.
iter = attributes.values().iterator();
while (iter.hasNext()) {

Attribute attribute = (Attribute)iter.next();
if (!attribute.hasMode()) {

attribute.setMode(defaultMode);
}

}

return attributes;
}

/**
* Class to represent an Attribute of a BOM node.
*/

private class Attribute implements com.sun.java.util.collections.Comparable {
private BomNode m_node;
private int m_index;
private String m_path;
private int m_mode;
private String m_attrContext;
private String m_name;
private RuntimeNode m_feature;
private boolean found = false;

protected Attribute(BomNode node, int index) {
m_node = node;
m_index = index;
m_path = null;
m_mode = -1;
m_attrContext = null;
m_name = null;
m_feature = null;

}
public String getPath() {

return m_path;
}

public boolean hasMode() {
return (m_mode != -1);

}

A-20 Oracle Configurator Methodologies

Using Configuration Attributes for Output
public int getMode() {
return m_mode;

}

public String getAttrContext() {
if (m_attrContext == null && getFeature() != null) {

Property prop = m_feature.getPropertyByName("ATTR_CONTEXT");
if (prop != null) {

m_attrContext = prop.getStringValue();
}

}
return m_attrContext;

}

public String getName() {
if (m_name == null && getFeature() != null) {

Property prop = m_feature.getPropertyByName("ATTR_NAME");
if (prop != null) {

m_name = prop.getStringValue();
}

}
return m_name;

}
public RuntimeNode getFeature() {

// If the feature has not been found previously then this method will first
// try to find it. This is done as follows:
// First traverse up the tree from this BomNode to find the Bom Model that
// it belongs to. Then get each child node's name from the path (the names are
// separated by ".") and do a getChildByName() to traverse down from the model
// node until the feature is found at the end of the path.
if (!found) findFeature();
return m_feature;

}

/**
* Returns the attribute's value as an integer.
*/

public int getIntValue() {
if (hasIntegerValue()) {

if (m_feature instanceof IntegerNode) {
return ((IntegerNode)m_feature).getIntValue();

} else {
return ((CountFeature)m_feature).getCount();

}

Code Examples A-21

Using Configuration Attributes for Output
} else {
throw new RuntimeException("This attribute does not have integer value");

}
}

/**
* Returns the attribute's value as a string.
*/

public String getStringValue() {
if (hasStringValue()) {

if (m_feature instanceof TextNode) {
return ((TextNode)m_feature).getTextValue();
} else {

// Return the name of the only selected option in is this option feature
return ((IRuntimeNode)(((OptionFeatureNode)m_

feature).getSelectedOptions().get(0))).getName();
}

} else {
throw new RuntimeException("This attribute does not have String value");

}
}

/**
* Returns the attribute's value as a double.
*/

public double getDecimalValue() {
if (hasDecimalValue()) {

return ((DecimalNode)m_feature).getDecimalValue();
} else {

throw new RuntimeException("This attribute does not have decimal value");
}

}

/**
* Returns the attribute's value as a boolean.
*/

public boolean getBooleanValue() {
if (hasBooleanValue()) {

return ((BooleanFeature)m_feature).isTrue();
} else {

throw new RuntimeException("This attribute does not have boolean value");
}

}

/**
A-22 Oracle Configurator Methodologies

Using Configuration Attributes for Output
* Returns true if attribute feature has an integer value.
*/

public boolean hasIntegerValue() {
RuntimeNode feature = getFeature();
return (feature instanceof IntegerNode || feature instanceof CountFeature);

}

/**
* Returns true if attribute feature has a decimal value.
*/

public boolean hasDecimalValue() {
RuntimeNode feature = getFeature();
return (feature instanceof DecimalNode);

}

/**
* Returns true if attribute feature has a boolean value.
*/

public boolean hasBooleanValue() {
RuntimeNode feature = getFeature();
return (feature instanceof BooleanFeature);

}

/**
* Returns true if attribute feature has a string value.
*/

public boolean hasStringValue() {
RuntimeNode feature = getFeature();
return (feature instanceof TextNode ||

(feature instanceof OptionFeatureNode &&
((OptionFeatureNode)feature).getSelectedOptions().size() == 1));

}

protected void setPath(String path) {
m_path = path;

}

protected void setMode(int mode) {
m_mode = mode;

}

protected void setAttrContext(String context) {
m_attrContext = context;
Code Examples A-23

Using Configuration Attributes for Output
}

protected void setName(String name) {
m_name = name;

}

private void findFeature() {
// Set the found flag to true once the path has been set
// so that we do not attempt to find it again
if (getPath() != null) {

found = true;
} else return;

RuntimeNode node = m_node;
while (!(node instanceof BomModel)) {

node = (RuntimeNode)node.getParent();
}

if (node instanceof BomModel) { // We found the model
StringTokenizer tokenizer = new StringTokenizer(getPath(), ".", false);
while (tokenizer.hasMoreTokens()) {

try {
node = (RuntimeNode)node.getChildByName(tokenizer.nextToken());
if (node instanceof ComponentSet) {

throw new RuntimeException("Cannot refer to a multiply instantiable Component: " +
node.getName() + " in the Attribute Path");

}
} catch (NoSuchChildException nsce) {

throw new RuntimeException("No attribute feature found in Path " +
getPath() + " for Node " + m_node.getName());

}
}
m_feature = node;

}
}

public String toString() {
return getAttrContext() + getName();

}

public boolean equals(Object obj) {
if (obj instanceof Attribute) {

String myAttr = getAttrContext();
String myName = getName();
String objAttr = ((Attribute)obj).getAttrContext();
A-24 Oracle Configurator Methodologies

Using Configuration Attributes for Output
String objName = ((Attribute)obj).getName();
if (myAttr != null && objAttr != null && myAttr.equals(objAttr) &&

myName != null && objName != null && myName.equals(objName)) {
return true;

}
}
return false;

}

public int compareTo(Object o) {
if (equals(o)) {

return 0;
} else {

return this.toString().compareTo(o.toString());
}

}

}

}

Code Examples A-25

Using Configuration Attributes for Output
A-26 Oracle Configurator Methodologies

Glossary of Terms and Acronyms

This glossary contains definitions that you may need while working with Oracle
Configurator.

Active Model

The compiled structure and rules of a configuration model that is loaded into
memory on the Web server at configuration session initialization and used by the
Oracle Configurator engine to validate runtime selections. The Active Model must
be generated either in Oracle Configurator Developer or programmatically in
order to access the configuration model at runtime.

API

Application Programming Interface

applet

A Java application running inside a Web browser. See also Java and servlet.

application architecture

The software structure of an application at runtime. Architecture affects how an
application is used, maintained, extended, and changed.

architecture

See application architecture.

ATO

Assemble to Order
Glossary of Terms and Acronyms-1

ATP

Available to Promise

attribute

The defining characteristic of something. Models have attributes such as Effectivity
Sets and Usage. Components, Features, and Options have attributes such as Name,
Description, and Effectivity.

benchmark

Represents performance data collected during runtime tests under various
conditions that emulate expected and extreme use of the product.

beta

An external release, delivered as an installable application, and subject to
acceptance, validation, and integration testing. Specially selected and prepared
end users may participate in beta testing.

bill of material

A list of Items associated with a parent Item, such as an assembly, and information
about how each Item relates to that parent Item.

Bills of Material

The application in Oracle Applications in which you define a bill of material.

BOM

See bill of material.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an
Oracle Bills of Material item. Can be a BOM Model, BOM Option Class node, or
BOM Standard Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO rules, and other
data are also imported into Configurator Developer. In Configurator Developer,
you can extend the structure of the BOM Model, but you cannot modify the BOM
Model itself or any of its attributes.
Glossary of Terms and Acronyms-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Model created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

bug

See defect.

build

A specific instance of an application during its construction. A build must have an
install program early in the project so that application implementers can unit test
their latest work in the context of the entire available application.

CIO

See Oracle Configuration Interface Object (CIO).

client

A runtime program using a server to access functionality shared with other clients.

Comparison rule

An Oracle Configurator Developer rule type that establishes a relationship to
determine the selection state of a logical Item (Option, Boolean Feature, or
List-of-Options Feature) based on a comparison of two numeric values (numeric
Features, Totals, Resources, Option counts, or numeric constants). The numeric
values being compared can be computed or they can be discrete intervals in a
continuous numeric input.
Glossary of Terms and Acronyms-3

Compatibility rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,
Property-based Compatibility rule.

Compatibility Table

A kind of Explicit Compatibility rule. For example, a type of compatibility
relationship where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is
configurable and instantiable. An Oracle Configurator Developer node type that
represents a configurable element of a Model. Corresponds to one UI screen of
selections in a runtime Oracle Configurator.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

concurrent manager

A process manager that coordinates the concurrent processes generated by users’
concurrent requests. An Oracle Applications product group can have several
concurrent managers.

concurrent process

A task that can be scheduled and is run by a concurrent manager. A concurrent
process runs simultaneously with interactive functions and other concurrent
processes.

concurrent processing facility

An Oracle Applications facility that runs time-consuming, non-interactive tasks in
the background.

concurrent program

Executable code (usually written in SQL*Plus or Pro*C) that performs the
function(s) of a requested task. Concurrent programs are stored procedures that
Glossary of Terms and Acronyms-4

perform actions such as generating reports and copying data to and from a
database.

concurrent request

A user-initiated request issued to the concurrent processing facility to submit a
non-interactive task, such as running a report.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

Configuration Interface Object

See Oracle Configuration Interface Object (CIO).

configuration model

Represents all possible configurations of the available options, and consists of
model structure and rules. It also commonly includes User Interface definitions
and Functional Companions. A configuration model is usually accessed in a
runtime Oracle Configurator window. See also model.

configuration rules

The Oracle Configurator Developer Logic rules, Compatibility rules, Comparison
rules, Numeric rules, and Design Charts available for defining configurations. See
also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which
end users make selections to configure an orderable product. A configuration
session is limited to one configuration model that is loaded when the session is
initialized.

configurator

The part of an application that provides custom configuration capabilities.
Commonly, a window that can be launched from a hosting application so end users
Glossary of Terms and Acronyms-5

can make selections resulting in valid configurations. Compare Oracle
Configurator.

connectivity

The connection between client and database server that allows data
communication.

The connection across components of a model that allows modeling such products
as networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node’s parent to a referenced Model.

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models containing connectivity
and trackable components. Configurations created from Container Models can be
tracked and updated in Oracle Install Base

context

The surrounding text or conditions of something.

Determines which context-sensitive segments of a flexfield in the Oracle
Applications database are available to an application or user. Used in defining
configuration attributes.

Contributes to

A relation used to create a specific type of Numeric rule that accumulates a total
value. See also Total.

Consumes from

A relation used to create a specific type of Numeric rule that decrementing a total
value, such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CRM

See Customer Relationship Management
Glossary of Terms and Acronyms-6

CTO

Configure to Order

customer

The person for whom products are configured by end users of the Oracle
Configurator or other ERP and CRM applications. Also the end users themselves
directly accessing Oracle Configurator in a Web store or kiosk.

customer-centric extensions

See customer-centric views.

customer-centric views

Optional extensions to core functionality that supplement configuration activities
with rules for preselection, validation, and intelligent views. View capabilities
include generative geometry, drawings, sketches and schematics, charts,
performance analyses, and ROI calculations.

Customer Relationship Management

The aspect of the enterprise that involves contact with customers, from lead
generation to support services.

customer requirements

The needs of the customer that serve as the basis for determining the configuration
of products, systems, and services. Also called needs assessment. See guided
buying or selling.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

data import

Populating the Oracle Configurator schema with enterprise data from ERP or
legacy systems via import tables.

Data Integration Object

Also known as the DIO, the Data Integration Object is a server in the runtime
application that creates and manages the interface between the client (usually a
user interface) and the Oracle Configurator schema.
Glossary of Terms and Acronyms-7

data maintenance environment

The environment in which the runtime Oracle Configurator data is maintained.

data source

A programmatic reference to a database. Referred to by a data source name (DSN).

DBMS

Database Management System

default

A predefined value. In a configuration, the automatic selection of an option based
on the preselection rules or the selection of another option.

Defaults rule

An Oracle Configurator Developer Logic rule that determines the logic state of
Features or Options in a default relation to other Features and Options. For
example, if A Defaults B, and you select A, B becomes Logic True (selected) if it is
available (not Logic False).

defect

A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a bug.

defect tracking

A system of identifying defects for managing additional tests, testing, and approval
for release to users.

deliverable

A work product that is specified for review and delivery.

demonstration

A presentation of the tested application, showing a particular usage scenario.

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.
Glossary of Terms and Acronyms-8

design review

A technical review that focuses on application or system design.

developer

The person who uses Oracle Configurator Developer to create a configurator. See
also implementer and user.

Developer

The tool (Oracle Configurator Developer) used to create configuration models.

DHTML

Dynamic Hypertext Markup Language

DIO

See Data Integration Object.

distributed computing

Running various components of a system on separate machines in one network,
such as the database on a database server machine and the application software on
a Web server machine.

DLL

Dynamically Linked Library

DSN

See data source.

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary
by project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers
directly accessing the application via a Web browser or kiosk. Compare user.

enterprise

The systems and resources of a business.
Glossary of Terms and Acronyms-9

environment

The arena in which software tools are used, such as operating system, applications,
and server processes.

ERP

Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

Excludes rule

An Oracle Configurator Developer Logic rule determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Negates rule.

extended functionality

A release after delivery of core functionality that extends that core functionality
with customer-centric views, more complex proposal generation, discounting,
quoting, and expanded integration with ERP, CRM, and third-party software.

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

Functional Companion

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

An object associated with a Component that supplies methods that can be used to
initialize, validate, and generate customer-centric views and outputs for the
configuration.

functional specification

Document describing the functionality of the application based on user
requirements.
Glossary of Terms and Acronyms-10

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the
configuration process. Also, the model structure that defines these questions.
Typically, guided selling questions trigger configuration rules that automatically
select some product options and exclude others based on the end user’s responses.

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

HTML

Hypertext Markup Language

ICX

Inter-Cartridge Exchange

implementation

The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed configuration
application. The implementation stage includes gathering requirements, defining
test cases, designing the application, constructing and testing the application, and
delivering it to end users. See also developer and user.

implementer

The person who uses Oracle Configurator Developer to build the model structure,
rules, and UI customizations that make up a runtime Oracle Configurator.
Commonly also responsible for enabling the integration of Oracle Configurator in a
host application.

Implies rule

An Oracle Configurator Developer Logic rule that determines the logic state of
Features or Options in an implied relation to other Features and Options. For
example, if A Implies B, and you select A, B becomes Logic True. If you deselect A
(set to User False), there is no effect on B, meaning it could be User or Logic True,
User or Logic False, or Unknown. See Requires rule.

import server

A database instance that serves as a source of data for Oracle Configurator’s
Populate, Refresh, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.
Glossary of Terms and Acronyms-11

import tables

Tables mirroring the Oracle Configurator schema Item Master structure, but
without integrity constraints. Import tables allow batch population of the Oracle
Configurator schema’s Item Master. Import tables also store extractions from Oracle
Applications or legacy data that create, update, or delete records in the Oracle
Configurator schema Item Master.

incremental construction

The process of organizing the construction of the application into builds, where
each build is designed to meet a specified portion of the overall requirements and is
unit tested.

initialization message

The XML message sent from a host application to the Oracle Configurator Servlet,
containing data needed to initialize the runtime Oracle Configurator. See also
termination message.

install program

Software that sets up the local machine and installs the application for testing and
use.

Instance

An Oracle Configurator Developer attribute of a component’s node that specifies a
minimum and maximum value. See also instance.

instance

A runtime occurrence of a component in a configuration. See also instantiate.
Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a
component in the runtime user interface of a configuration model.

integration

The process of combining multiple software components and making them work
together.
Glossary of Terms and Acronyms-12

integration testing

Testing the interaction among software programs that have been integrated into an
application or system. Compare unit test.

intelligent views

Configuration output, such as reports, graphs, schematics, and diagrams, that help
to illustrate the value proposition of what is being sold.

IS

Information Services

item

A product or part of a product that is in inventory and can be delivered to
customers.

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications
or a legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from
Oracle Inventory are Item Types in Oracle Configurator Developer.

Java

An object-oriented programming language commonly used in internet applications,
where Java applications run inside Web browsers and servers. See also applet and
servlet.

LAN

Local Area Network

LCE

Logical Configuration Engine. Compare Active Model.
Glossary of Terms and Acronyms-13

legacy data

Data that cannot be imported without creating custom extraction programs.

load

Storing the configuration model data in the Oracle Configurator Servlet on the
Web server. Also, the time it takes to initialize and display a configuration model if
it is not preloaded.

The burden of transactions on a system, commonly caused by the ratio of user
connections to CPUs or available memory.

log file

A file containing errors, warnings, and other information that is output by the
running application.

Logic rules

Logic rules directly or indirectly set the logical state (User or Logic True, User or
Logic False, or Unknown) of Features and Options in the Model.

There are four primary Logic rule relations: Implies, Requires, Excludes, and
Negates. Each of these rules takes a list of Features or Options as operands. See also
Implies rule, Requires rule, Excludes rule, and Negates rule.

maintainability

The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

maintenance

The effort of keeping a system running once it has been deployed, through defect
fixes, procedure changes, infrastructure adjustments, data replication schedules,
and so on.

Metalink

Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

Model

The entire hierarchical "tree" view of all the data required for configurations,
including model structure, variables such as Resources and Totals, and elements in
Glossary of Terms and Acronyms-14

support of intermediary rules. Includes both imported BOM Models and Models
created in Configurator Developer. May consist of BOM Option Classes and BOM
Standard Items.

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

model-driven UI

The graphical views of the model structure and rules generated by Oracle
Configurator Developer to present end users with interactive product selection
based on configuration models.

model structure

Hierarchical "tree" view of data composed of elements (Models, Components,
Features, Options, BOM Models, BOM Option Class nodees, BOM Standard Item
nodes, Resources, and Totals). May include reusable components (References).

MS

Microsoft Corporation

Negates rule

A type of Oracle Configurator Developer Logic rule that determines the logic state
of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the
other option must be Logic True (selected). See Excludes rule.

node

The icon or location in a Model tree in Oracle Configurator Developer that
represents a Component, Feature, Option or variable (Total or Resource),
Connector, Reference, BOM Model, BOM Option Class node, or BOM Standard
Item node.

Numeric rule

An Oracle Configurator Developer rule type that express constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes
from.
Glossary of Terms and Acronyms-15

OC

See Oracle Configurator.

ODBC

Open Database Connectivity. A database access method that uses drivers to
translate an application’s data queries into DBMS commands.

OCD

See Oracle Configurator Developer.

opportunity

The workspace in Oracle Sales Online in which products, systems, and services are
configured, quotes and proposals are generated, and orders are submitted.

option

A logical selection made by the end user when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configuration Interface Object (CIO)

A server in the runtime application that creates and manages the interface between
the client (usually a user interface) and the underlying representation of model
structure and rules in the Active Model.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

Oracle Configurator

The product consisting of development tools and runtime applications such as the
Oracle Configurator schema, Oracle Configurator Developer, and runtime Oracle
Configurator. Also the runtime Oracle Configurator variously packaged for use in
networked or Web deployments.

Oracle Configurator architecture

The three-tier runtime architecture consists of the User Interface, the Active Model,
and the Oracle Configurator schema. The application development architecture
consists of Oracle Configurator Developer and the Oracle Configurator schema,
with test instances of a runtime Oracle Configurator.
Glossary of Terms and Acronyms-16

Oracle Configurator Developer

The suite of tools in the Oracle Configurator product for constructing and
maintaining configurators.

Oracle Configurator engine

Also LCE. Compare Active Model.

Oracle Configurator schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as
well as specific tables used during the construction of the configurator.

Oracle Configurator Servlet

Vehicle for Oracle Configurator containing the UI Server.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by
end users to make the selections of a configuration.

Oracle SellingPoint Application

No longer available or supported.

output

The output generated by a configurator, such as quotes, proposals, and
customer-centric views.

performance

The operation of a product, measured in throughput and other data.

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

preselection

The default state in a configurator that defines an initial selection of Components,
Features, and Options for configuration.

A process that is implemented to select the initial element(s) of the configuration.
Glossary of Terms and Acronyms-17

product

Whatever is ordered and delivered to customers, such as the output of having
configured something based on a model. Products include intangible entities such
as services or contracts.

project manager

A member of the project team who is responsible for directing the project during
implementation.

project plan

A document that outlines the logistics of successfully implementing the project,
including the schedule.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model,
Oracle Inventory Catalog Descriptive Elements are Properties in Oracle
Configurator Developer.

Property-based Compatibility rule

A kind of compatibility relationship where the allowable combinations of Options
are specified implicitly by relationships among Property values of the Options.

prototype

A construction technique in which a preliminary version of the application, or part
of the application, is built to facilitate user feedback, prove feasibility, or examine
other implementation issues.

PTO

Pick to Order

publication

A unique deployment of a configuration model (and optionally a user interface)
that enables a developer to control its availability from hosting applications such as
Oracle Order Management or iStore. Multiple publications can exist for the same
configuration model, but each publication corresponds to only one Model and User
Interface.
Glossary of Terms and Acronyms-18

publishing

The process of creating a publication record in Oracle Configurator Developer,
which includes specifying applicability parameters to control runtime availability
and running an Oracle Applications concurrent process to copy data to a specific
database.

QA

Quality Assurance

RAD

Rapid Application Development

RDBMS

Relational Database Management System

reference

The ability to reuse an existing Model or Component within the structure of
another Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another
Model.

regression test

An automated test that ensures the newest build still meets previously tested
requirements and functionality. See also incremental construction.

Requires rule

An Oracle Configurator Developer Logic rule that determines the logic state of
Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected).
Similarly, if you deselect A, B is set to Logic False (deselected). See Implies rule.

resource

Staff or equipment available or needed within an enterprise.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the
amount of memory in a computer. The value of a Resource can be positive or zero,
Glossary of Terms and Acronyms-19

and can have an Initial Value setting. An error message appears at runtime when
the value of a Resource becomes negative, which indicates it has been
over-consumed. Use Numeric rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

reusable component

See reference and model structure.

reusability

The extent to and ease with which parts of a system can be put to use in other
systems.

RFQ

Request for Quote

ROI

Return on Investment

rules

Also called business rules or configuration rules. Constraints applied among
elements of the product to ensure that defined relationships are preserved during
configuration. Elements of the product are Components, Features, and Options.
Rules express logic, numeric parameters, implicit compatibility, or explicit
compatibility. Rules provide preselection and validation capability in Oracle
Configurator.

See also Comparison rule, Compatibility rule, Design Chart, Logic rules and
Numeric rule.

runtime

The environment and context in which applications are run, tested, or used, rather
than developed.

The environment in which an implementer (tester), end user, or customer
configures a product whose model was developed in Oracle Configurator
Developer. See also configuration session.

sales configuration

A part of the sales process to which configuration technology has been applied in
order to increase sales effectiveness and decrease order errors. Commonly identifies
customer requirements and product configuration.
Glossary of Terms and Acronyms-20

schema

The tables and objects of a data model that serve a particular product or business
process. See Oracle Configurator schema.

SCM

Supply Chain Management

server

Centrally located software processes or hardware, shared by clients.

servlet

A Java application running inside a Web server. See also Java, applet, and Oracle
Configurator Servlet.

SFA

Sales Force Automation

solution

The deployed system as a response to a problem or problems.

SQA

Software Quality Assurance

SQL

Structured Query Language

system

The hardware and software components and infrastructure integrated to satisfy
functional and performance requirements.

termination message

The XML message sent from the Oracle Configurator Servlet to a host application
after a configuration session, containing configuration outputs. See also
initialization message.

test case

A description of inputs, execution instructions, and expected results that are created
to determine whether a specific software feature works correctly or a specific
requirement has been met.
Glossary of Terms and Acronyms-21

Total

A variable in the Model used to accumulate a numeric total, such as total price or
total weight.

Also a specific node type in Oracle Configurator Developer. See also node.

UI

See User Interface.

Unknown

The logic state that is neither true nor false, but unknown at the time a
configuration session begins or when a Logic rule is executed. This logic state is
also referred to as Available, especially when considered from the point of view of
the runtime Oracle Configurator end user.

unit test

Execution of individual routines and modules by the application implementer or
by an independent test consultant to find and resolve defects in the application.
Compare integration testing.

update

Moving to a new version of something, independent of software release. For
instance, moving a production configurator to a new version of a configuration
model, or changing a configuration independent of a model update.

upgrade

Moving to a new release of Oracle Configurator or Oracle Configurator
Developer.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle
Configurator. Compare end user.

User Interface

The part of Oracle Configurator architecture runtime architecture that is generated
from the model structure and provides the graphical views necessary to create
configurations interactively. Interacts with the Active Model and data to give end
users access to customer requirements gathering, product selection, and
customer-centric views.
Glossary of Terms and Acronyms-22

user interface

The visible part of the application, including menus, dialog boxes, and other
on-screen elements. The part of a system where the user interacts with the software.
Not necessarily generated in Oracle Configurator Developer.

user requirements

A description of what the configurator is expected to do from the end user's
perspective.

user's guide

Documentation on using the application or configurator to solve the intended
problem.

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

Validation

A type of Functional Companion that is implemented to ensure that the configured
components will meet specific criteria.

VAR

Value-Added Reseller

variable

Parts of the Model that are represented by Totals, Resources, or numeric Features.

VB

Microsoft Visual Basic. Programming language in which portions of Oracle
Configurator Developer are written.

verification

Tests that check whether the result agrees with the specification.

WAN

Wide Area Network

Web

The portion of the Internet that is the World Wide Web.
Glossary of Terms and Acronyms-23

WIP

Work In Progress

XML

Extensible Markup Language, a highly flexible markup language for transferring
data between Web applications. Used for the initialization message and
termination message of the Oracle Configurator Servlet.
Glossary of Terms and Acronyms-24

Index

A
Advanced Pricing, 1-46
afterSave(), 1-43

code example, A-12
attribute Features

definition, 1-13, 1-30

B
Base Component

rule definition attribute, 1-14

C
CfgInputExample.java, A-2
configuration attributes

custom database procedures, 1-47
CZ_CONFIG_ATTRIBUTES table, 1-27
definition, 1-1
Functional Companions, 1-15, 1-42
input, 1-3, 1-7
output, 1-3, 1-25

CZ_CONFIG_ATTRIBUTES
Table in CZ schema, 1-27

D
descriptive flexfields

See flexfields

E
extending

Java classes, 1-15

F
flexfields

defining for configuration attributes, 1-29
used for configuration attributes, 1-3

Functional Companions
for input configuration attributes, 1-15
for output configuration attributes, 1-42

I
initial requests, 1-17

for configuration attributes, 1-16

J
Java

classes
extending, 1-15

M
Model

data
configuration attributes, 1-1

O
Oracle Applications

short names for, 1-19
Oracle Configurator

TAR template, xviii
Index-1

Oracle Configurator Developer
product support, xviii

Oracle Quoting, 1-24

P
Product Support, i-xviii, xviii
product support for Oracle Configurator

Developer, xviii

R
references

with output configuration attributes, 1-40, 1-41

S
short names

for Oracle Applications, 1-19
Support, i-xviii, xviii

T
TAR, xviii
Technical Assistance Request (TAR), xviii

U
UOM

unit of measurement, 1-1

V
validation

failures, 1-23

W
WriteAttributes.java, A-11
Index-2

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	Product Support

	Part I� Configuration Attributes
	1 Configuration Attributes
	1.1� Overview of Configuration Attributes
	1.1.1� Purpose
	1.1.1.1� Typical Problems To Be Solved
	1.1.1.2� Solutions
	1.1.1.3� Use of Configuration Attributes for Input
	1.1.1.4� Use of Configuration Attributes for Output

	1.1.2� Overviews of Implementing Configuration Attributes
	1.1.2.1� Overview of Implementing Configuration Attributes for Input
	1.1.2.2� Overview of Implementing Configuration Attributes for Output

	1.1.3� Deploying the Solution

	1.2� Implementing Configuration Attributes for Input
	1.2.1� Example for Implementing Input Configuration Attributes
	1.2.2� Host Application Integration with Oracle Configurator
	1.2.2.1� Responsibilities For Custom Host Application
	1.2.2.2� Responsibilities For Oracle Applications Application Host
	1.2.2.3� Responsibilities For Functional Companion Implementer

	1.2.3� Modifying the Model
	1.2.3.1� Creating Attribute Features
	1.2.3.2� Creating Options
	1.2.3.3� Creating Functional Companion Rules

	1.2.4� Modifying the Functional Companion Example
	1.2.4.1� Implementing AutoFunctionalCompanion Methods
	1.2.4.2� Structuring the Behavior
	1.2.4.3� Getting Session Parameters
	1.2.4.4� Identifying the Host Application
	1.2.4.5� Extracting Input Attribute Data for the Specified Quote Line
	1.2.4.6� Transferring Data to Features
	1.2.4.7� Guidelines for the Functional Companion

	1.2.5� Runtime Behavior

	1.3� Implementing Configuration Attributes for Output
	1.3.1� Database Tables for Configuration Attributes
	1.3.1.1� The CZ_CONFIG_ATTRIBUTES Table
	1.3.1.2� General Information about Tables

	1.3.2� Defining Descriptive Flexfields
	1.3.3� Modifying the Model
	1.3.3.1� Design Principles
	1.3.3.2� Example of Model Structure
	1.3.3.3� Alternative Modeling Strategies
	1.3.3.4� Special Considerations
	1.3.3.5� Creating Functional Companion Rules

	1.3.4� The Output Functional Companion
	1.3.5� Using Configuration Attributes in the Downstream Application
	1.3.5.1� Storing Output Data for Downstream Use
	1.3.5.2� Using Output Data in Downstream Applications
	1.3.5.3� Linking Configuration Attributes to Flexfields
	1.3.5.4� Downstream User Interfaces

	1.3.6� Maintaining the Output Solution
	1.3.7� Optional Flows
	1.3.7.1� Modifying the Functional Companion

	Part II� Appendices
	A Code Examples
	A.1� Using Configuration Attributes for Input
	A.2� Using Configuration Attributes for Output

	Glossary of Terms and Acronyms
	Active Model
	API
	applet
	application architecture
	architecture
	ATO
	ATP
	attribute
	benchmark
	beta
	bill of material
	Bills of Material
	BOM
	BOM item
	BOM Model
	BOM Model node
	BOM Option Class node
	BOM Standard Item node
	Boolean Feature
	bug
	build
	CIO
	client
	Comparison rule
	Compatibility rule
	Compatibility Table
	component
	Component
	Component Set
	concurrent manager
	concurrent process
	concurrent processing facility
	concurrent program
	concurrent request
	configuration
	configuration attribute
	Configuration Interface Object
	configuration model
	configuration rules
	configuration session
	configurator
	connectivity
	Connector
	Container Model
	context
	Contributes to
	Consumes from
	count
	CRM
	CTO
	customer
	customer-centric extensions
	customer-centric views
	Customer Relationship Management
	customer requirements
	CZ
	data import
	Data Integration Object
	data maintenance environment
	data source
	DBMS
	default
	Defaults rule
	defect
	defect tracking
	deliverable
	demonstration
	Design Chart
	design review
	developer
	Developer
	DHTML
	DIO
	distributed computing
	DLL
	DSN
	element
	end user
	enterprise
	environment
	ERP
	Excludes rule
	extended functionality
	feature
	Feature
	Functional Companion
	functional specification
	guided buying or selling
	host application
	HTML
	ICX
	implementation
	implementer
	Implies rule
	import server
	import tables
	incremental construction
	initialization message
	install program
	Instance
	instance
	instantiate
	integration
	integration testing
	intelligent views
	IS
	item
	Item
	Item Master
	Item Type
	Java
	LAN
	LCE
	legacy data
	load
	log file
	Logic rules
	maintainability
	maintenance
	Metalink
	Model
	model
	model-driven UI
	model structure
	MS
	Negates rule
	node
	Numeric rule
	OC
	ODBC
	OCD
	opportunity
	option
	Option
	Oracle Configuration Interface Object (CIO)
	Oracle Configurator
	Oracle Configurator architecture
	Oracle Configurator Developer
	Oracle Configurator engine
	Oracle Configurator schema
	Oracle Configurator Servlet
	Oracle Configurator window
	Oracle �SellingPoint Application
	output
	performance
	Populator
	preselection
	product
	project manager
	project plan
	Property
	Property-based Compatibility rule
	prototype
	PTO
	publication
	publishing
	QA
	RAD
	RDBMS
	reference
	Reference
	regression test
	Requires rule
	resource
	Resource
	reusable component
	reusability
	RFQ
	ROI
	rules
	runtime
	sales configuration
	schema
	SCM
	server
	servlet
	SFA
	solution
	SQA
	SQL
	system
	termination message
	test case
	Total
	UI
	Unknown
	unit test
	update
	upgrade
	user
	User Interface
	user interface
	user requirements
	user's guide
	validation
	Validation
	VAR
	variable
	VB
	verification
	WAN
	Web
	WIP
	XML

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	M
	O
	P
	R
	S
	T
	U
	V
	W

